
Hands On
AppGameKit

Studio
Volume 1

Digital Skills

www.digital-skills.co.uk

Alistair Stewart

Hands On
AppGameKit Studio

Volume 1

Alistair Stewart

Digital Skills
Milton
Barr
Ayrshire
KA26 9TY
UK

www.Digital-Skills.co.uk
+44(0)1465 861 638tel:

www.digital-skills.co.uk

Copyright © Digital Skills 2015 - 2020

All rights reserved.

No part of this work may be reproduced or used in any form without
written permission from Digital Skills.

Although every effort has been made to ensure accuracy, the author
and publisher accept neither liability nor responsibility for any loss or
damage arising from the information in this book.

AppGameKit Studio is developed and owned by The Game Creators
Ltd. All Rights Reserved.

Cover Image: NASA

First Published May 2019
Updated May 2020

Title: Hands On AppGameKit Studio Volume 1

ISBN: 978-1-874107-24-8

Other Titles Available:

Hands On AppGameKit Studio Volume 2
Hands On C++17

Contents

Algorithms
Designing Algorithms ...2

Following Instructions ..2
Solving Problems ...2
The Nature of Algorithms ...5
Sequence ...5
Selection ..6
Iteration ...14
Complex Conditions ...19
Data ...24
Counts and Totals ..26
Levels of Detail ...28
Checking for Errors ..31
Summary ..35

Support Material for this Chapter ..37
Algorithm Constructor (TriLogic.exe) ..37
Algorithm Tracer (CardAlgorithm.exe) ..38
Reviewer (Remember01.exe) ..39

Solutions ..40

Background Intel
Number Systems...44

Introduction ...44
Computers and the Binary System ..44
Converting Fractions ..47
Hexadecimal ...49
Octal ..52
Storing Numbers ..52
Negative Numbers in Binary ..54
Floating Point Values in Binary ...56
Character Coding ..58
Summary ..59

Support Material for this Chapter ..61
Integer Number Converter (Numbers.exe) ..61

Solutions ..63

Starting AGK Studio
Programming a Computer ..66

Introduction ...66
The Compilation Process ..66

Functions ..68
First Steps in AGK Studio ...70

Introduction ...70
Starting Up AGK Studio ...70
The Main Menu..71
The Quick Access Toolbar ..75
The Help Window..76
The Remaining Windows ...76
Starting a New Project ..79
The Program Code ..82
Running Your App on a Tablet or Smartphone85

First Statements in AGK BASIC ...88
Introduction ...88
Adding Comments ..88
Print() ..89
PrintC() ...91
Other Statements which Modify Output ..91
Summary ..97

App Window Properties ..98
Running Apps on a Desktop ..98
Screen Orientation ..99
Measurements ..102
Modifying a New Project’s Default Code ..107
Summary ..107

A Splash Screen ..109
Starting a New Project ...111
AGK Studio “Look and Feel” ..112

Introduction ...112
Preferences Settings ...112

Solutions ..118

Data
Program Data ...122

Introduction ...122
Constants ..122
Variables ..122
Declaring Variables ...126
Named Constants ..127
AGK Studio’s Variable and Constant Lists ...128
Summary ..129

Allocating Values to Variables ..130
Introduction ...130

The Assignment Statement ...130
The Print() Statement Again ..137
Acquiring Data ...139
User Input ...149
Keeping Track of Variable Names ...153
Summary ..154

Testing Sequential Code ..156
Solutions ..158
Binary Selection ...162

Introduction ...162
The if Statement ...162
The Other if Statement ..171
Summary ..171

Multi-Way Selection ..172
Introduction ...172
Nested if Statements ..172
The select Statement ..174
Testing Selection Code ..178
Summary ..180

Solutions ..181

Iteration and Debugging
Iteration ...186

Introduction ...186
The while...endwhile Construct ..186
The repeat...until Construct ..188
The for...next Construct ...189
Finding the Smallest Value in a List of Values195
The exit Statement ...196
The continue Statement ..198
The do...loop Construct ..200
Nested Loops ..200
Nested for Loops ..201
Nested Loops and the exit and continue Statements202
Testing Iteration Code ..203
Summary ..205

Debugging ...207
Introduction ...207
Using Extra Code...207
Using AGK Studio’s Debugger ...207
Code Properties ...214
Summary ..216

Solutions ..218

A First Look at Resources
Drawing Functions ..226

Introduction ...226
The Screen Coordinate System ..226
Determining the Window and Screen Sizes228
Calculating the Percentage to Pixel Ratio ..229
Defining Colour ...230
Drawing ..231
Summary ..235

Images ..237
Introduction ...237
Images ...237
Images in AGK ..240
Summary ..241

Sprites ..242
Introduction ...242
Using Sprites ...242
Sprite Depth ...247
Summary ..256

Detecting User Interaction ...259
Introduction ...259
Pointer Statements ...259
The Screen Pointer and Sprites ..262
Summary ..263

Text Resources ..264
Introduction ...264
Text Statements ..264
Using a Text Resource ...269
Summary ..270
Later in the Book ...271

Solutions ..274

Spot the Difference Game
Game - Spot the Difference ...280

Introduction ...280
Game Design ..280
Game Code ...287

Solutions ..294

User-Defined Functions
Functions ...300

Introduction ...300
Functions ..300
Parameters ..307
Return Types ..311
Summary ..317

BASIC Subroutines ..319
Introduction ...319
Creating a Subroutine ...319

A Library of Functions ..321
Introduction ...321
Creating a Library ..321
Using A Library File ..322

Testing Functions ...324
Introduction ...324
Black Box Testing ..324
Boundary Testing ..326
White Box Testing ...327
Combining Test Requirements ..327
Test Drivers ..328
Function Complexity ..330
Summary ..331

Functions and the Debugger ..332
Summary ..333

Solutions ..334

String and Maths Functions
String Functions ...340

Introduction ...340
String-Handling Functions ..340
Creating Our Own String Functions ..350
Summary ..360

Maths Functions ...362
Introduction ...362
Arithmetic Functions ..362
Trigonometric Functions ..365
Trigonometric Functions ..366
Summary ..382

Solutions ..385

Arrays
Arrays ..392

Problems with Simple Variables ..392
One Dimensional Arrays ..392

Additional Features ...398
Arrays and Functions ..405
Using Numeric Arrays ..410
Using String Arrays ...429
Dynamic Arrays ...430
The undim Statement ..430
Multi-dimensional Arrays ..431
3-Dimensional Arrays and Higher ..433
Higher Dimension Arrays and Functions ..434
Summary ..434

Arrays and the Debugger ..437
Solutions ..438

Records and Bit Operators
Record Structures ...450

Introduction ...450
Type Definitions ..450
Declaring Variables of a Defined Type ...451
Arrays of Records ..454
Records and Functions ...456
Using Records for Game Elements ..460
Summary ..460

Manipulating Bits ...462
Introduction ...462
Other Number Systems ..462
Shift Operators ...463
Bitwise Boolean Operators ...465
Practical Uses For Bitwise Operations ..468
Summary ..472

Solutions ..474

File Handling
Files ..480

Introduction ...480
Writing to a File ...480
Reading From a File ..484
File Management ...490
How To Record Highest Game Scores ..492
Folder Management ..494
Raw File Commands ...500
Windows Commands ...506
File - Zip ...507
Summary ..511

Advanced Code Properties ...513
Review ...513
Other Options ..513
Summary ..518

Solutions ..519

Multimedia Resources
Sound ...524

Introduction ...524
Sound Statements ..525
Adding Sound to a Game ...534
Text-to-Speech ...535
Vibration ...540
Summary ..541

Music..544
Introduction ...544
OGG Music Statements ..544
Original Music Statements ...549
Summary ..553

Video ..555
Introduction ...555
Video Statements ...555
Playing Video on an Image ..560
Screen Recording ...561
Playing a YouTube Video ..563
Summary ..564

Solutions ..566

User Input - 1
Buttons ...570

Virtual Buttons ...570
State Transition Diagrams ..577
Summary ..581

Keyboard Input...583
Introduction ...583
Text-Input Statements ...583
Adding a Name to the Top Five Scores ...586
Desktop Keyboards ...590
Summary ..593

Solutions ..595

Program Structure Templates
Creating a Game Program Structure ...600

Introduction ...600
The CatchACrab Game ..600
Type Definitions ..601
Named Constants ..602
Global Variables ...602
Main Program Structure ...602
Core Functions...603
Guidelines to the Other Functions ..606
Reusing ShowEndMessage() ..613
Summary ..614

Dragging and Timeslicing ...615
Introduction ...615
Dragging ...615
Parallel Processing ...616
Summary ..619

Adding Sound ...620
Introduction ...620
Catching the Crab ..620
Dragging the Rock ...620

Replacing the Default Skeleton Code ..623
Introduction ...623

Solutions ..625

Sprite Movement
Sprite Movement ..632

Introduction ...632
Movement Calculations ..632
Interacting with Other Sprites ...641
Sprites Under User Control ..649
Firing a Missile ...656
Summary ..660

Support Material for this Chapter ..661
Pointing a Sprite in the Direction of Travel (RotateSprite.exe)661

Solutions ..662

Sprite Animation
Animation ...670

Animated Sprites ...670
Animation in Meteors ...676
Other Uses for Frames ..683
Summary ..690

Solutions ..692

Creating Games
Game Coding ..700

Introduction ...700
Arrays of Sprites ...700
Game Labels ...702
Detecting Collisions ..703
Finding a Sprite’s Data in an Array ...703

Completing BrickBat ...705
Introduction ...705
Layout and Rules ...705
Resources ..706
Program Logic ...707
The Coding - Main Section ..707
The Coding - Functions ..710
Structure Diagrams ...716

Completing CatchACrab...718
Introduction ...718
Adding More Rocks and Crabs ..718
Live Testing Tweaks ...727

Creating an Android App ...729
Introduction ...729
User Interface Changes ...729
Test the App ..729
Creating an Independent App ...730
Installing the App ..731

 Solutions ...734

Sync() and Images
Sync() ..742

Introduction ...742
Functions Called by Sync() ... 742
Replacing a Call to Sync() ... 743

Images ..744
Introduction ...744
Review ...744
Further Image Statements ..744
Atlas Texture Images ...745
Manipulating Images ..751
Adding a Magnifying Glass ..763
Image Selection from Storage ..767
Using a Device’s Camera ...769
Mapping Images to Sprites ...774

Resizing an Image ..778
Making a Colour Invisible ..779
Summary ..781

Solutions ..783

Text Resources
Text ...788

Introduction ...788
Review ...788
Vector-Based Text Statements ..789
Image and Vector Based Text Statements ...796
Image and Vector Based Character Statements804
Image-Based Only Text Statements ..811
Summary ..818

Solutions ..822

Particles
Particles ...826

Introduction ...826
Creating Particles ...826
Retrieving Particles Data ..847
Summary ..850

Solutions ..853

Advanced Sprites
Advanced Sprites ..858

Introduction ...858
Review ...858
Other Sprite Statements ..860
Image to Sprite Mapping ..875
Sprite Bounding Areas ..889
Sprite Groups ...896
Sprite Categories ..899
Sprites at a Distance ..900
Ray Casting ...903
Summary ..911

Sprite Lines ..914
Introduction ...914
Creating a Sprite Line..914
Drawing Rectangles ...921
Drawing Circles ...923
Drawing Polygons..924
Adding the Routines to Our Library ...926

Solutions ..927

Screen Handling
Screen Handling ...936

Introduction ...936
Review ...936
Screen Size Statements ..937
World Space and Screen Space ..941
Zooming and Scrolling ...942
Touch Statements ...955
Summary ..963

Frame Rate ..966
Introduction ...966
Frame Timing Statements ..966
Summary ..969

Solutions ..970

User Input - 2
Edit Box Statements ...976

Introduction ...976
Edit Box Statements ..976
Summary ..992

Clipboard Text ..995
Introduction ...995
Summary ..997

Joystick Input ..998
Introduction ...998
Virtual Joystick Statements ..998
Virtual/Physical Joysticks ...1004
Physical Joysticks ...1007
Summary ..1010

Device Dependent Input ...1012
Introduction ...1012
Accelerometer Statements ..1012
Mouse Statements ..1015
GPS ..1018
Gyroscope ...1019
Light Sensor ..1020
Magnetism Sensor ...1020
Proximity Sensor ...1020
Near Field Communication ...1021
Device Identity ...1021
Summary ..1023

Solutions ..1025

The Scene Editor
The Scene Editor Controls ..1028

Introduction ...1028
Using the Scene Editor ..1028
A Second Project ...1045
A Third Project ..1050

Using a Scene in an App ..1054
Introduction ...1054
Using the Generated Functions ...1054
Using Our Own Functions ...1058

Solutions ..1062

Extras
Drawing a Simple Bezier Curve ...1070

Introduction ...1070
Calculating the Curve ...1070
Adding to the LineSprite Library ..1071
Testing the Bezier Curve Functions ..1079

Map Jigsaw ..1084
Introduction ...1084
Coding the Program..1085

Solutions ..1097

Appendix A ...1101
ASCII Codes ...1101

Preface

Who this Book is For

This book is designed for anyone with a desktop computer who wants a complete
introduction to programming in general and to games programming using
AppGameKit Studio in particular. Even if you are an experienced programmer,
you’ll find AGK Studio a unique and flexible tool for creating games.

Any games that have been created can easily be transferred to a phone or tablet.

What the Book Can Do for You

This book will guide you in an easy-to-follow, step-by-step, activity-based manner
through the techniques and methods required to create numerous game-related
programs. By the end of this volume you will have a good understanding of
programming in AGK Studio BASIC (the programming language used), have worked
through hundreds of activities and developed several games. Where appropriate, full
solutions to the activities are given at the end of each chapter.

A second volume is available which covers more advanced topics such as 3D games,
2D and 3D physics, networking games and game artificial intelligence.

What You Can Do for the Book

Although we have tried to eliminate any errors and omissions from the book, it is
possible that a few minor problems have made it through to this final version. And
although these will probably have little effect on the effectiveness of the text, it would
be ideal if the contents were without errors. You can help with this process if you are
willing to take a few minutes of your time to report any changes that are required (or
desired) in the text to maximise its usefulness.

Emails to comments@digital-skills.co.uk.

Book Resources

Media files required for some of the activities in this book can be downloaded from
the Digital Skills website (www.digital-skills.co.uk).

Hands On AppGameKit Studio Volume 1: Algorithms 1

In this Chapter:

T Understanding Algorithms

T Creating Algorithms

T Control Structures

T Boolean Expressions

T Data Types

T Stepwise Refinement

T The Need for Testing

Algorithms

2 Hands On AppGameKit Studio Volume 1: Algorithms

Designing Algorithms

Following Instructions

Congratulations! You’ve just become a human computer. You were given a set of
instructions which you have carried out (by the way, did you think of the colour
grey?).

That’s exactly what a computer does. We give it a set of instructions, the machine
carries out those instructions - and that is ALL a computer does. If some computers
seem to be able to do amazing things, that is only because someone has written an
amazingly clever set of instructions. A set of instructions designed to perform some
specific task (like that in Activity 1.1) is known as an algorithm.

A clear and concise algorithm should have the following characteristics:

■ One instruction per line

■ Each instruction should be clear and unambiguous

■ Each instruction should be as brief as possible

Solving Problems
As programmers, we will normally be presented with a problem for which we are
expected to come up with an efficient algorithm and computer program.

The first step is to make sure that the problem to be tackled has been stated in a clear
and unambiguous way. If it isn’t, ask for a clearer, more detailed description of what
is required.

The second step is to make sure you understand the problem. If you don’t, try reading
the problem again or getting help from others.

The third step is to develop some method of tackling the problem. Remember, the
first ideas you come up with are often not the best ones!

The final step is to create a solution to the problem - the algorithm.

Let’s take a favourite logic problem and see how we can develop a solution:

A container (labelled A) holds exactly 3 litres of water when full. A second container

Activity 1.1

Carry out the following set of instructions in your head.

 Think of a number between 1 and 10
 Multiply that number by 9
 Add up the individual digits of this new number
 Subtract 5 from this total
 Think of the letter at that position in the alphabet
 Think of a country in Europe that starts with that letter
 Think of a mammal that starts with the second letter of the country’s name
 Think of the colour of that mammal

Hands On AppGameKit Studio Volume 1: Algorithms 3

(labelled B) holds exactly 5 litres. With an unlimited water supply, measure out
exactly 4 litres of water.

Assuming we understand the problem, FIG-1.1 shows how we might go about
tackling the problem.

FIG-1.1

Solving the Four Litre
Problem

A

A

B

B

B

3 litre
jug

5 litre
jug

A B

Tap

Fill B Fill A from B

contains 5
litres

B

contains 5
litres

contains 3
litres

contains 2
litres

contains 2
litres

contains 2
litres

contains 0
litres

contains 0
litres

B

A

B
Fill A from B

contains 3
litres

contains 4
litres

A

A

Empty A

contains 2
litres

Empty B into A

Fill B

1 2

34

5 6

4 Hands On AppGameKit Studio Volume 1: Algorithms

The solution to the task can now be written as the following algorithm:

Fill B
Fill A from B
Empty A
Empty B into A
Fill B
Fill A from B

As you can see, there are at least two ways to solve the original problem. Is one better
than the other? Well, if we start by filling container B, the solution needs less
instructions, so that might be a good guideline at this point when choosing which
algorithm is best.

Computer Programs

The algorithms that a computer carries out are not written in English like the
instructions shown above, but in a more stylised form using a computer programming
language. AGK BASIC (also known as AGK Tier 1) is one such language. For
example, the code below displays the result of the calculation 12 x 3.

num1 = 12
num2 = 3
answer = num1 * num2
Print(answer)

The set of program language instructions which make up each algorithm is then
known as a computer program or software.

Just as we may perform a great diversity of tasks by following different sets of
instructions, so the computer can be made to carry out any task for which a program
exists.

Computer programs are normally copied (or loaded) from a magnetic disk or flash
storage into the computer’s memory and then executed (or run). Execution of a

Activity 1.2

Often there will be more than one way to arrive at a solution to a problem.
Write an alternative solution to the 4 litre problem by starting with the
instruction

 Fill A

Activity 1.3

Write an algorithm for the following problem:

A traveller arrives at a river he must cross with a wolf, goat and cabbage.
He has access to a boat to cross the river and reach home. However, the boat
can only carry him and one of his belongings. Normally, he would just make
several crossings to get the wolf, goat and cabbage to the other side, but, if left
alone together, the wolf would eat the goat and the goat would eat the cabbage.

How does the traveller get all three possessions safely to the other side of the
river?

Hands On AppGameKit Studio Volume 1: Algorithms 5

program involves the computer performing each instruction in the program one after
the other. This it does at impressively high rates, possibly exceeding 300,000 million
(or 300 billion) instructions per second (usually written as 300,000 mips).

Depending on the program being run, the computer may act as a word processor, a
database, a spreadsheet, a game, a musical instrument or one of many other
possibilities. Of course, as a programmer, you are required to design and write
computer programs rather than use them. And, more specifically, our programs in this
text will be mainly game-oriented, an area of programming for which AGK BASIC
has been specifically designed.

The Nature of Algorithms
Although writing algorithms and programming computers can be complicated tasks,
there are only a few basic concepts and statements which you need to master before
you are ready to start producing software. Luckily, many of these concepts are
already familiar to you in everyday situations. If you examine any algorithm, no
matter how complex, you will find it consists of only three basic structures:

■ Sequence where one instruction follows on from another.

■ Selection where a choice is made between two or more alternative
 actions.

■ Iteration where one or more instructions are carried out over and
 over again.

These structures are explained in detail over the next few pages. All that is needed is
for us to move from the rather free-style way we might express these structures in
everyday English to the more formalised style used for writing algorithms. This
formalisation better matches the structures used within a computer program.

Sequence
A set of instructions designed to be carried out one after another, beginning at the first
and continuing, without omitting any, until the final instruction is completed, is
known as a sequence. For example, the solutions to the 4 litre problem and traveller
problems were both examples of a sequence.

As you can see from the TriLogic puzzle, you are expected to construct the instructions
in a very specific format. If you deviate from that format, you’ll get an error message.
This is typical of any true programming language: each statement must be constructed
according to strict rules.

Activity 1.4

Download the file containing support material for this book from www.digital-
skills.co.uk (you’ll find a link on the AGK Downloads page) and unzip the file.

From the folder AGK/Resources/Ch01/TriLogic, run TriLogicGame.exe, press
the Start button. Click on the tokens to construct the lines of an algorithm that
moves the counters from position 1 to position 3.
A typical statement would be
 MOVE C1 TO P2

Note that a larger piece must never be placed on top of a smaller piece.

6 Hands On AppGameKit Studio Volume 1: Algorithms

Selection
Binary Selection

Often a group of instructions in an algorithm should be carried out only when certain
circumstances arise. For an example of this, consider the board game of Snakes and
Ladders (see FIG-1.2).

Each player has a counter which moves along the board by an amount determined by
the throw of a die. The aim of the game is to be the first to reach the final square
(square 64). We could describe a move as

Throw die
Move counter forward by the number thrown
Pass die to next player

However, when a player’s counter stops on a square at the bottom of a ladder, it
moves to the square at the top of the ladder (see FIG-1.3).

We might explain this rule with an instruction such as:

When a counter stops at the bottom of a ladder, move the counter to the top of the
ladder

FIG-1.2

A Snakes and Ladders
Board

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

17 18 19 20 21 22 23 24

32 31 30 29 28 27 26 25

33 34 35 36 37 38 39 40

48 47 46 45 44 43 42 41

49 50 51 52 53 54 55 56

64 63 62 61 60 59 58 57

FIG-1.3

Snakes and Ladders:
Moving Up a Ladder

1 2 3 4

16 15 14 13

17 18 19 20 21

1 2 3 4

16 15 14 13

17 18 19 20 21
If a counter stops at the
bottom of a ladder, it is
automatically moved to
the top of the ladder

Hands On AppGameKit Studio Volume 1: Algorithms 7

Notice that the statement consists of two main components:

 a condition : a counter stops at the bottom of a ladder
and
 a command : move the counter to the top of the ladder

A condition (also known as a Boolean expression) is a statement that is either true
or false at a given moment in time. The command given in the statement is only
carried out if the condition is true at that particular moment and hence this type of
instruction is known as an IF statement.

Although we could rewrite the above instruction in many different ways, when we
produce a set of instructions in a formal manner, as we are required to do when
writing algorithms, then we use a specific layout as shown in FIG-1.4, always
beginning with the word IF.

It is important to realise that there are two alternative options to this structure: to
carry out the command or to ignore it. From this we get the formal name for the IF
statement - binary selection.

Notice that the layout of this instruction makes use of three terms that are always
included. These are the words IF, which marks the beginning of the instruction;
THEN, which separates the condition from the command; and finally, ENDIF which
marks the end of the instruction.

The indentation of the command is important since it helps our eye grasp the structure
of the instruction. Appropriate indentation is particularly valuable in aiding readability
once an algorithm becomes long and complex. Using this layout, the instruction for
our Snakes and Ladders game would be written as:

 IF counter stops at the bottom of a ladder THEN
 Move counter to top of ladder
 ENDIF

Sometimes, there will be several commands to be carried out when the condition
specified is met. For example, in the game of Scrabble we might describe a turn as:

 IF you can make a word THEN
 Add the word to the board
 Work out the points gained
 Add the points to your total
 Select more letter tiles
 ENDIF

Of course, the IF statement will almost certainly appear within a longer set of
instructions. For example, we could now write the instruction for a single move in
Snakes and Ladders as:

FIG-1.4

The IF Statement

 condition

command

command

IF THEN

ENDIF

... then command
is ignored...

...and the �rst
command after ENDIF

is carried out

If condition
is true...

...then
command is
carried out...

...followed by
the command

after ENDIF

If condition
is false...

8 Hands On AppGameKit Studio Volume 1: Algorithms

Roll die
Move counter forward by the number thrown
IF counter stops at the bottom of a ladder THEN
 Move counter to top of ladder
ENDIF
Pass die to next player

This longer list of instructions highlights the usefulness of the term ENDIF in
separating the conditional command, Move counter to top of ladder, from subsequent
unconditional instructions, in this case, Pass die to next player.

An algorithm may contain many separate IF statements if the logic requires them. For
example, in Snakes and Ladders, another rule is that counters that stop at the head of
a snake must move to the tail of the snake.

The IF structure is also used in an extended form to offer a choice between two
alternative actions. This expanded form of the IF statement includes another formal
term, ELSE, and a second command. If the condition specified in the IF statement is
true, then the command following the term THEN is executed, otherwise the
command following ELSE is carried out. For instance, lets assume that a card game
requires the top card of a face-down deck is to be turned face up and then added to
the left or right hand pile as appropriate (see FIG-1.5).

Activity 1.5

A simple game involves two players. Player 1 thinks of a number between 1
and 100, then Player 2 makes a single attempt at guessing the number. Player 1
responds to a correct guess by saying Correct. If the guess is incorrect, Player 1
makes no response. The game is then complete and Player 1 states the value of
the number he thought of.

Write the set of instructions necessary to play the game. In your solution,
include the statements:

 Player 1 says “Correct”
 Player 1 thinks of a number
 IF guess matches number THEN

Activity 1.6

Modify the algorithm of Snakes and Ladders, given earlier, to include
instructions for landing on the head of a snake.

FIG-1.5

Placing Cards

2

2 Q

Q

9

9

A

A 3

3 K

K

Black Cards Red Cards

Hands On AppGameKit Studio Volume 1: Algorithms 9

We could write the algorithm for this as:

Turn over top card
IF card is black THEN
 Add card to left-hand pile
ELSE
 Add card to right-hand pile
ENDIF

The general form of this extended IF statement is shown in FIG-1.6.

Multi-way Selection

Although a simple IF statement can be used to select one of two alternative actions,
sometimes we need to choose between more than two alternatives (known as multi-
way selection). For example, imagine that the rules of the simple guessing game
mentioned in Activity 1.5 are changed so that there are three possible responses to
Player 2’s guess; these being:

FIG-1.6

The IF..THEN..ELSE
Structure condition

command 1

IF

ENDIF

THEN

ELSE
command 2

command

If condition
is true...

If condition
is false...

...then
command1 is
carried out...

...then
command2 is
carried out...

...followed by
the command

after ENDIF

...followed by
the command

after ENDIF

Activity 1.7

In the game of Hangman, Player 1 has to guess the letters in a word known to
Player 2. At the start of the game Player 2 draws one underscore for each letter
in the word. When Player 1 guesses a letter which is in the word, Player 2
writes the letter above the appropriate underscore. When an incorrect letter is
guessed, Player 2 draws a body part of a hanging man (there are 6 parts in the
simple drawing).

Write an IF statement containing an ELSE section which describes the
alternative actions to be taken by Player 2 when Player 1 guesses a letter.

In the solution include the statements:
 Add letter at appropriate position(s)
 Add part to hanged man

S E E N

10 Hands On AppGameKit Studio Volume 1: Algorithms

■ Correct

■ Too low

■ Too high

One way to create an algorithm that describes this situation is just to employ three
separate IF statements:

 IF guess matches number THEN
 Player 1 says “Correct”
 ENDIF
 IF guess is lower than number THEN
 Player 1 says “Too low”
 ENDIF
 IF guess is higher than number THEN
 Player 1 says “Too high”
 ENDIF

This will work, but would not be considered a good design for an algorithm since,
when the first IF statement is true, we still go on and check if the conditions in the
second and third IF statements are true (see FIG-1.7).

Checking those last two IF statements is a waste of effort since, if the first condition
is true, the others cannot be and therefore testing them serves no purpose.

Where only one of the conditions being considered can be true at a given moment in
time, these conditions are known as mutually exclusive conditions.

FIG-1.7

Working Through the
Algorithm

Lets assume we want to work through
the algorithm below when the guess is
4 and the number is also 4.

In this situation, the first condition is
true, and so we execute the conditional
statement in the first IF structure.

After completing the first IF statement,
the conditions in the second and third
IF statements are tested and found to
be false.

If we examine the three conditions
more closely, we can see that only one
of them can be true at any given
moment.

IF guess matches number THEN
 Player 1 says “Correct”
ENDIF
IF guess lower than number THEN
 Player 1 says “Too low”
ENDIF
IF guess higher than number THEN
 Player 1 says “Too high”
ENDIF

IF guess matches number THEN
 Player 1 says “Correct”
ENDIF
IF guess lower than number THEN
 Player 1 says “Too low”
ENDIF
IF guess higher than number THEN
 Player 1 says “Too high”
ENDIF

IF guess matches number THEN
 Player 1 says “Correct”
ENDIF
IF guess lower than number THEN
 Player 1 says “Too low”
ENDIF
IF guess higher than number THEN
 Player 1 says “Too high”
ENDIF

true

false

false

execute

guess matches number
guess lower than number
guess higher than number

Only one condition can be
true for a given set of values
for guess and number

Hands On AppGameKit Studio Volume 1: Algorithms 11

The most effective way to deal with mutually exclusive conditions is to check for one
condition, and only if this is false, do we bother to examine the other conditions being
tested. So, for example, in Snakes and Ladders, we cannot be at the bottom of a
ladder and at the head of a snake at the same time, so we could rewrite our IF
statements as

IF counter at bottom of ladder THEN
 Move counter to top of ladder
ELSE
 IF counter at head of snake THEN
 Move counter to tail of snake
 ENDIF
ENDIF

In the number guessing game, we have three possible outcomes to handle. Taking
things slowly, we could start this part of our algorithm with:

 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 Check the other conditions
 ENDIF

Of course a statement like

*** Check the other conditions ***

is too vague to be much use in an algorithm (hence the asterisks). But what are these
other conditions suggested by this statement? They are

 guess is lower than number
and
 guess is higher than number

We already know how to handle a situation where there are only two alternatives: use
an IF statement. So selecting between Too low and Too high requires the statement

 IF guess is lower than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF

Now, by replacing the phrase ***Check the other conditions*** in our original algorithm
with our new IF statement we get:

 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says ”Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF

Activity 1.8

Show how the algorithm containing the three IF statements would be dealt with
if guess was 6 and number was 2.

12 Hands On AppGameKit Studio Volume 1: Algorithms

Notice that the second IF statement is now totally contained within the ELSE section
of the first IF statement. This situation is known as nested IF statements.

FIG-1.8 shows how our new nested IF algorithm handles the situation where number
is 2 and guess is 6.

Where there are even more mutually exclusive alternatives, several IF statements
may be nested in this way.

FIG-1.8

Working Through A
Nested IF Structure

With number equal to 2 and guess
equal to 6, the nested IF version of the
algorithm follows the steps shown
below.

The next statement is another IF whose
condition is found to be false, and so
the ELSE option of this IF statement is
executed.

IF guess matches number THEN
 Player 1 says “Correct”
ELSE
 IF guess lower than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
ENDIF

IF guess matches number THEN
 Player 1 says “Correct”
ELSE
 IF guess lower than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
ENDIF

false

false

So ELSE
option selected

So ELSE
option selected

Activity 1.9

Show what parts of the nested IF algorithm would be performed if number was
8 and guess 7.

Activity 1.10

In a video game, the player controls the movement of a character using the
following keys:

 Key Movement
 W Forward
 S Backward
 M Move to the right
 N Move to the left
 U Jump up

The character fires when the space key is pressed.

Only one key can be pressed at a time.

Write a set of nested IF statements which can handle the situation described
above.

The solution should contain lines such as

 IF W key pressed THEN
and
 Move character forward

Hands On AppGameKit Studio Volume 1: Algorithms 13

As you can see from the solution to Activity 1.10, although nested IF statements get
the job done, the general structure can be rather difficult to follow. A better method
would be to change the format of the IF statement so that several, mutually exclusive
conditions can be declared in a single IF statement along with the action required for
each of these conditions. This would allow us to rewrite the solution to Activity 1.10
as:

 IF
 W key pressed: Move character forward
 S key pressed: Move character backward
 M key pressed: Move character to the right
 N key pressed: Move character to the left
 U key pressed: Make character jump up
 Space key pressed: Fire weapon
 ENDIF

Each option is explicitly named (ending with a colon) and only the one which is true
will be carried out, the others will be ignored.

Of course, we are not limited to merely six options; there can be as many as the
situation requires.

We could add another feature to our character controls by making the game emit a
sound when an invalid key (such as X or B) is pressed. To do this we would add an
extra ELSE section to our code.

 IF
 W key pressed: Move character forward
 S key pressed: Move character backward
 M key pressed: Move character to the right
 N key pressed: Move character to the left
 U key pressed: Make character jump up
 Space key pressed: Fire weapon
 ELSE
 Play beep noise
 ENDIF

The additional ELSE option will be chosen only if none of the other options are
applicable (that is, if an invalid key is pressed). In other words, it acts like a catch-all,
handling all the possibilities not explicitly mentioned in the earlier conditions. This
gives us the final form of this style of the IF statement as shown in FIG-1.9.

FIG-1.9

The Multi-Way IF
Structure

IF
 condition 1:

 commands1

 condition 2:

 commands2

 condition 3:

 commands 3

ELSE
 commands
ENDIF

If condition1
is true...

If condition2
is true...

...commands1
executed

...commands2
executed

...commands3
executed

If condition3
is true...

As many conditions and corresponding
commands as necessary can be inserted

If none of the above conditions are true,
then these commands are executed

14 Hands On AppGameKit Studio Volume 1: Algorithms

Iteration
There are certain circumstances in which it is necessary to perform the same sequence
of instructions several times. For example, during a lottery draw, we could describe
the basic action as

 Pick out ball
 Call out number on the ball

Now, since six balls are drawn, we need to perform these instructions six times. One
way to create an algorithm for this task is simply to repeat the statements:

 Pick out ball
 Call out number on the ball
 Pick out ball
 Call out number on the ball
 Pick out ball
 Call out number on the ball
 Pick out ball
 Call out number on the ball
 Pick out ball
 Call out number on the ball
 Pick out ball
 Call out number on the ball

This would certainly accomplish the task, but it is rather-long winded.

However, not only does it seem rather time-consuming to have to write the same
sequence of instructions six times, but it would be even worse if we used the same
approach to describe a game of Bingo where many more balls are drawn!

What is required is a way of showing that a section of the instructions is to be repeated
a fixed number of times. Carrying out one or more statements over and over again is
known as looping or iteration. The statement or statements that we want to perform
over and over again are known as the loop body.

FOR..ENDFOR

When writing a formal algorithm in which we wish to repeat a set of statements a

Activity 1.11

In the TV game Wheel of Fortune (where you have to guess a well-known
phrase), you can, on your turn, either guess a consonant, buy a vowel, or make a
guess at the whole phrase.

If you think you know the phrase, you should make a guess at what it is; if there
are still many unseen letters, you should guess a consonant; as a last resort you
can buy a vowel.

Write an IF statement in the style given above describing how to choose from
the three options.

Activity 1.12

What statements make up the loop body in the lottery problem given above?

Hands On AppGameKit Studio Volume 1: Algorithms 15

specific number of times, we use a FOR..ENDFOR structure.

There are two parts to this statement. The first of these is placed just before the loop
body and in it we state how often we want the statements in the loop body to be
carried out. For the lottery problem our statement would be:

 FOR 6 times DO

Generalising, we can say this statement takes the form

 FOR value times DO

where value would be some positive number.

Next come the statements that make up the loop body. These are indented:

FOR 6 times DO
 Pick out ball
 Call out number on ball

Finally, to mark the fact that we have reached the end of the loop body statements we
add the word ENDFOR:

 FOR 6 times DO
 Pick out ball
 Call out number on ball
ENDFOR

The instructions between the terms FOR and ENDFOR are now carried out six times.

The latest algorithm for our guessing game was:

 Player 1 thinks of a number between 1 and 100
 Player 2 makes an attempt at guessing the number
 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF

Player 2 would have more chance of winning if he were allowed several chances at
guessing Player 1’s number. To allow several attempts at guessing the number, some
of the statements given above would have to be repeated.

Activity 1.13

If we were required to draw out 10 balls rather than 6, what changes would we
need to make to the algorithm?

Activity 1.14

What statements in the algorithm above need to be repeated?

16 Hands On AppGameKit Studio Volume 1: Algorithms

To allow for 7 attempts, our new algorithm becomes:

Player 1 thinks of a number between 1 and 100
FOR 7 times DO
 Player 2 makes an attempt at guessing the number
 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF
ENDFOR

Occasionally, we may have to use a slightly different version of the FOR loop.

In our Snakes and Ladders game we described a player’s move with the algorithm

Roll die
Move counter forward by the number thrown
IF counter stops at the bottom of a ladder THEN
 Move counter to top of ladder
ENDIF
IF counter stops at the head of a snake THEN
 Move counter to tail of snake
ENDIF
Pass die to next player

Although we need to have every player perform these same instructions, we have no
way of knowing, when writing the instructions, exactly how many players there will
be each time the game is played. To overcome this problem we start our loop with
the statement

FOR each player DO

to give the following algorithm

FOR each player DO
 Roll die
 Move counter forward by the number thrown
 IF counter stops at the bottom of a ladder THEN
 Move counter to top of ladder
 ENDIF
 IF counter stops at the head of a snake THEN
 Move counter to tail of snake
 ENDIF
 Pass die to next player
ENDFOR

If we had to save the details of a game of chess with the intention of going back to
the game later, we might write:

Activity 1.15

Can you see a practical problem with the algorithm?

If not, try playing the game a few times, playing exactly according to the
instructions in the algorithm.

Hands On AppGameKit Studio Volume 1: Algorithms 17

FOR each piece on the board DO
 Write down the name and position of the piece
ENDFOR

The general form of the FOR statement is shown in FIG-1.10.

Although the FOR loop allows us to perform a set of statements a specific number of
times, this statement is not always suitable for the problem we are trying to solve.

For example, the algorithm created for the guessing game in Activity 1.15 highlighted
the problem of having a fixed number of attempts at guessing the value of a number.
To solve this problem, we need another way of expressing looping which does not
commit us to a specific number of iterations.

REPEAT.. UNTIL

The REPEAT .. UNTIL statement allows us to specify that a set of statements should
be repeated until some condition becomes true, at which point iteration should cease.

The word REPEAT is placed at the start of the loop body and, at its end, we add the
UNTIL term. The UNTIL term also contains a condition, which, when true, causes
iteration to stop. This is known as the terminating (or exit) condition. For example,
we could use the REPEAT.. UNTIL structure rather than the FOR loop in our guessing
game algorithm. The new version would then be:

 Player 1 thinks of a number between 1 and 100
 REPEAT
 Player 2 makes an attempt at guessing the number
 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF
 UNTIL Player 2 guesses correctly

We could also use the REPEAT..UNTIL loop to describe how a slot machine (one-

Activity 1.16

A card game requires only cards showing values between 1 (Ace) and 7, so
before beginning the game, all other cards (8 to King) must be removed.

Write an algorithm which places all cards in the range 1 to 7 in a separate pile
from those cards showing other values.

FIG-1.10

The FOR..ENDFOR
Loop

Typical expressions:
5 times,

every item

Speci�es the
number of times
commands is to

be executedFOR expression DO

 commands

ENDFOR

The
loop body

End of
loop

18 Hands On AppGameKit Studio Volume 1: Algorithms

armed bandit) is played:

 REPEAT
 Put coin in machine
 Pull handle
 IF you win THEN
 Collect winnings
 ENDIF
 UNTIL you want to stop

The general form of this structure is shown in FIG-1.11.

WHILE.. ENDWHILE

A final method of iteration, differing only subtly from the REPEAT.. UNTIL loop, is
the WHILE .. ENDWHILE structure which causes the statements in the loop body to
be executed as long as the stated condition is true. The condition appears at the start
of the structure (beside the term WHILE) and is known as an entry condition. The
following example illustrates the usefulness of this new structure.

The aim of the card game of Blackjack is to attempt to make the value of your cards
add up to 21 without going over that value. Each player is dealt two cards initially
but can repeatedly ask for another card by saying “hit”. One player is designated the
dealer. The dealer must take another card while his cards have a total value of less
than 17. So we might attempt to write the rules for the dealer as:

 Calculate the value of the initial two cards in hand
 REPEAT
 Take another card
 UNTIL value of cards in hand is greater than or equal to 17

But there’s a problem with the solution: if the sum of the first two cards is already 17
or above, we still need to take a third card (just work through the logic, if you can’t
see why). By using the WHILE..ENDWHILE structure we could rewrite the logic as

 Calculate the value of the initial two cards in hand
 WHILE value of cards in hand is less than 17 DO
 Take another card
 ENDWHILE

FIG-1.11

The REPEAT..UNTIL
Loop

REPEAT

 commands

UNTIL condition

Start of
loop

The
loop body

When condition
is true,

commands stops
being executed

Activity 1.17

A game requires a player to make use of a shuffled pack of cards lying face-
down. The top card is turned over and discarded. This continues until an Ace is
turned over.

Using REPEAT..UNTIL, write the logic required for the game.

Hands On AppGameKit Studio Volume 1: Algorithms 19

Now determining if the value is less than 17 is performed before the Take another card
instruction. If the dealer’s two cards already add up to 17 or more, then the Take
another card instruction will be ignored. The general form of the WHILE..
ENDWHILE statement is shown in FIG-1.12.

The differences in operation between the REPEAT..UNTIL and the WHILE..
ENDWHILE structures are shown in FIG-1.13.

The main consequence of these differences is that it is possible to bypass the loop
body of a WHILE structure entirely without ever carrying out any of the instructions
it contains. On the other hand, the loop body of a REPEAT structure will always be
executed at least once.

Complex Conditions
We have encountered the use of conditions in the IF, REPEAT..UNTIL, and WHILE..
ENDWHILE structures but so far we have shown only simple conditions in the
examples given. More complex conditions can be specified using the same terms we
might employ in everyday conversation: AND, OR and NOT.

The AND Operator

In the TV game Family Fortunes, you only win the star prize if you get 200 points
and guess the most popular answers to a series of questions. This can be described in
our more formal style as:

FIG-1.12

The WHILE..
ENDWHILE Loop WHILE condition

 commands

ENDWHILE

The
loop body

End of
loop

While condition
is true,

commands is
executed

FIG-1.13

The Differences
Between REPEAT..
UNTIL and WHILE..
ENDWHILE.

REPEAT..UNTIL WHILE..ENDWHILE

The condition appears after
the loop body

Looping stops when the
condition becomes true

The condition appears before
the loop body

Looping stops when the
condition becomes false

Activity 1.18

A game involves throwing two dice. If the two values thrown are not the same,
then the die showing the lower value must be rolled again. This process is
continued until both dice show the same value.

Write a set of instructions to perform this game. Your solution should contain
the statements
 Roll both dice
and Choose die with lower value

20 Hands On AppGameKit Studio Volume 1: Algorithms

IF at least 200 points gained AND all most popular answers have been guessed
THEN
 winning team get the star prize
 ENDIF

Note the use of the word AND in the above example. AND (called a Boolean
operator) is one of the terms used to link simple conditions in order to produce a
more complex one (known as a complex condition).

The conditions on either side of the AND are the operands. Both operands must be
true for the overall result to be true. We can generalise this to describe the AND
operator as being used in the form:

 condition 1 AND condition 2

The result of the AND operator is determined using the following rules:

 Determine the truth of condition 1
 Determine the truth of condition 2
 IF both conditions are true THEN
 the overall result is true
 ELSE
 the overall result is false
 ENDIF

For example, if a proximity light comes on when it’s dark and it detects motion then
we can describe the logic of the equipment as:

 IF it’s dark AND motion has been detected THEN
 Switch on light
 ENDIF

Now, if we assume that at a particular moment in time it’s dark but no motion has
been detected then condition 1 (it’s dark) is true but condition 2 (motion has been
detected) is false. Because one of the conditions is false, the overall result is false and
the light does not come on.

You are not limited to just one AND operator in a complex condition; you can have
as many as you need. For example, the conditions for foreign national flying to the
USA can be written as

IF you have a passport AND you have a visa AND you have an airline ticket THEN
 You can fly to the USA
ENDIF

All three conditions must be true before you can fly to the USA.

When there are two conditions being tested, there are four possible combinations of

Activity 1.19

A person must meet the following conditions to apply for a job:
 age over 21 AND height at least 5 feet 10 inches

Which of the following people can apply for the job:
 a) a person who is 18 years old and 6 feet high
 b) a person who is 23 years old and 5 feet 9 inches high
 c) a person who is 62 years old and 5 feet 10 inches high

Hands On AppGameKit Studio Volume 1: Algorithms 21

results. The first possibility is that both conditions are false; another possibility is that
condition 1 is false but condition 2 is true, etc.

All possibilities of the AND operator are summarised in FIG-1.14.

The OR Operator
Simple conditions may also be linked by the Boolean OR operator. Using OR, only
one of the two conditions specified needs to be true in order to carry out the action
that follows. For example, in the game of Monopoly you go to jail if you land on the
Go To Jail square or if you throw three doubles in a row. This can be written as:

IF player landed on Go To Jail OR player has thrown 3 pairs in a row THEN
 Move player to jail
ENDIF

Like AND, the OR operator works on two operands:

 condition 1 OR condition 2

Hence the results are determined by the following rules:

 Determine the truth of condition 1
 Determine the truth of condition 2
 IF any of the conditions are true THEN
 the overall result is true
 ELSE
 the overall result is false
 ENDIF

For example, if a player in the game of Monopoly has not landed on the Go To Jail
square, but has thrown three consecutive pairs, then the result of the IF statement
given above would be:

 Condition 1 (has landed on Go to Jail) is false
 Condition 2 (has thrown three consecutive doubles) is true
Because at least one of the conditions is true, the overall result is true, so the player

Activity 1.20

What are the other possible combinations for the two conditions?

Activity 1.21

In Microsoft Windows applications, the program will request the name of the
file to be opened if the Ctrl and O keys are pressed together.

Write the first line of an IF statement, which includes the term AND,
summarising this situation.

FIG-1.14

The AND Truthtable

Note that the result is
true only when both
conditions are true.

 condition 1 condition 2 condition 1 AND condition 2

 false false false
false true false
true false false
true true true

22 Hands On AppGameKit Studio Volume 1: Algorithms

player moves to Jail.

Using the OR operator, the possible combinations and results are summarised in FIG-
1.15.

As with AND, you can have as many OR statements as you need in a complex
condition. As long as at least one of the conditions given is true, the overall result will
be true.

The NOT Operator

The final Boolean operator which can be used as part of a condition is NOT. This
operator is used to reverse the meaning of a condition. In standard English, the
opposite of it’s dark is it’s not dark; in the structured English we always place the
word NOT first. This means that, rather than write it’s not dark, we would write

 NOT it’s dark

In Monopoly a player can charge rent on a property as long as that property is not
mortgaged. This situation can be described with the statement:

 IF NOT property mortgaged THEN
 Rent can be charged
 ENDIF

The NOT operator works on a single operand:

 NOT condition

When NOT is used, the result given by the original condition is reversed. Hence the
results are determined by the following rules:

1. Determine the truth of the original condition without the term NOT
2. Complement the result obtained in step 1

For example, if a player lands on a property that is not mortgaged, then the result of
the IF statement given above would be calculated as:

 Original condition (property mortgaged) is false
 So, since the complement of false is true, the result is true

This may seem a rather strange way to work out the overall result, but it will prove

FIG-1.15

The OR Truthtable

 condition 1 condition 2 condition 1 OR condition 2

 false false false
false true true
true false true
true true true

Activity 1.22

In the game of Monopoly, a player can get out of jail if they throw a double
(same value on both dice), pay a fine, or hand over a “Get Out of Jail Free”
card.

Write an IF statement that reflects this logic.

Hands On AppGameKit Studio Volume 1: Algorithms 23

to be a useful approach when we examine exactly how AGK BASIC operates in a
later chapter.

For many conditions you can eliminate the need for NOT by simply changing the
condition. So, rather than write NOT it’s dark we could write it’s light (assuming light or
dark are the only two options). But there are situations where using NOT will save a
lot of writing. For example, it’s easier to write

 IF NOT it’s Monday THEN

than

 IF it’s Sunday OR it’s Tuesday OR it’s Wednesday OR it’s Thursday OR it’s
 Friday OR it’s Saturday THEN

Although both IF statements are equivalent to each other, the first involves a lot less
typing!

The results of the NOT operator are summarised in FIG-1.16.

Mixing Boolean Operators

Conditions can get as complicated as your head can cope with. You can mix ANDs,
ORs and NOTs to your heart’s content in order to express the complex condition your
logic requires. When you have such a complex condition, the overall result is
calculated as follows:

 1. Determine the truth of each condition
 2. Perform all NOT operations
 3. Perform all AND operations
 4. Perform all OR operations

There will be some conditions where this order will not give the result you are after.
For example, let’s assume that to win a game you must first accumulate $100,000 and
then either own 25 properties or eliminate all other players. We could write this as:

 IF player has $100,000 AND player has 25 properties OR all other players
 eliminated THEN

Now, let’s assume the following conditions: a player has $80,000, 18 properties and
has eliminated all other players. Should this player win the game? No, because he
must have at least $100,000. But if we calculate the result according to the rules
above, then:

determining the truth of each condition we get:

 IF false AND false OR true THEN

Since, there are no NOT operators, we perform the AND operation giving:

 IF false OR true THEN

FIG-1.16

The NOT Truthtable

 condition NOT condition

 false true
true false

24 Hands On AppGameKit Studio Volume 1: Algorithms

And, finally, performing the OR operation leaves us with:

 IF true THEN

So, according to this, the player has won.

In situations like this, where we need to have the operations performed in a different
order, we may use parentheses. Any operations within parentheses are always
performed first. So, if we rewrite our IF statement as:

 IF player has $100,000 AND (player has 25 properties OR all other players
 eliminated) THEN

the steps become:

 IF false AND (false OR true) THEN
 ⇒ IF false AND true THEN
 ⇒ IF false THEN

and the player is shown to have not won.

Boolean operator priority is summarised in FIG-1.17.

Data
We know we need to retain information. Look at your phone; it is probably packed
with names, email addresses, phone numbers, and much more. Even when playing
an old-fashioned board game we need to remember things such as the number you
threw on the die, where your piece is on the board and so on.

FIG-1.17

Operator Priority

 Priority Operator

 1 ()
 2 NOT
 3 AND
 4 OR

Activity 1.23

A simple card game involves a player turning over cards from the top of a face-
down deck until an Ace or a King is uncovered. At this point the game stops.

Write a WHILE statement that describes the logic involved.

Activity 1.24

a) What is another term for condition?
b) Give an example of a Boolean operator.
c) If two conditions are linked using the term AND, how many of the
 conditions must be true before the conditional statement is executed?
d) If a complex condition contains both a NOT and an AND operator,
 which is performed first?
e) How can we modify a Boolean expression so that an OR operator is
 performed before an AND operator?

Hands On AppGameKit Studio Volume 1: Algorithms 25

All these examples introduce the need to process facts and figures (known as data).

Every item of data has two basic characteristics :

 a name
 and a value

The name of a data item is a description of the information it represents. Hence, on
a form we might see boxes labelled as Forename, Surname, Address, Phone No, etc.
These are the data names. And when we’ve completed the form, the boxes contain
the values we have written in. These are the data values.

In programming, a data item is often referred to as a variable. This term arises from
the fact that, although the name assigned to a data item cannot change, its value may
vary. For example, the value assigned to a variable called salary may rise (or fall)
over weeks, months or years.

Types of Data

Most computer programming languages need to be told what type of value is to be
held in a variable - for example, it needs to know if a variable will hold a number or
a message. Once the variable is set up for one type of value, it can’t be used to hold
any other type. Three of the basic data types recognised by AGK BASIC are:

 integer holds whole numbers only (eg -12, 0, 92).

 float holds numbers containing fractions (-14.6, 0.005, 176.0).
 Notice that the fraction part may be .0.

 string holds zero, one or more characters.

Other data types are possible, but we’ll look at these in a later chapter.

Operations on Data

There are four basic operations that an algorithm or computer program can do with
data. These are:

Input

This involves being given a value for a data item. For example, in our number-
guessing game, the player who has thought of the original number is given the value
of the guess from the second player. When using a computer, any value entered at the
keyboard, or any movement or action dictated by a mouse or joystick would be
considered as data entry. This type of action is known as an input operation.

Calculation

Most games involve some basic arithmetic. In Monopoly, the banker has to work out
how much change to give a player buying a property. If a character in an adventure
game is hit, points must be deducted from their strength value. This type of instruction
is referred to as a calculation operation. When describing a calculation, it is common
to use arithmetic operator symbols rather than English. Hence, instead of writing the
word subtract we use the minus sign (-). A summary of the operators available are
given in FIG-1.18.

26 Hands On AppGameKit Studio Volume 1: Algorithms

Comparison

Often values have to be compared. For example, we need to compare the two numbers
in our guessing game to find out if they are the same. This is known as a comparison
operation. Rather than use terms such as is less than, we use the less than symbol
(<). A summary of these comparison operators is given in FIG-1.19.

Output

The final requirement is to communicate with others to give the result of some
calculation or comparison. For example, in the guessing game, player 1 communicates
with player 2 by saying either that the guess is Correct, Too high or Too low.

In a computer environment, the equivalent operation would normally involve
displaying information on a screen or printing it on paper. For instance, in a racing
game your speed and time will be displayed on the screen. This is called an output
operation.

Counts and Totals
Perhaps two of the commonest requirements in programming are keeping counts and
keeping totals. Of course, these are operations that we perform often ourselves. If
you want to deal 13 cards from a deck, you’ll keep a mental count of how many
you’ve dealt so far. If you have several items to pay for in a shop, you’ll work out the
total price (or maybe you’ll just believe what the till tells you!).

To perform count and total operations in a detailed algorithm we need to make use of
variables.

FIG-1.18

The Arithmetic
Operators

 English Symbol

Multiply *
Divide /
Add +
Subtract -

Note the standard computing
practice of using * as the multiplication
operator and / for division

FIG-1.19

The Comparison
Operators

 English Symbol

is less than <
is less than or equal to <=
is greater than >
is greater than or equal to >=
is equal to =
is not equal to <>

Note the symbols <> are
used to mean not equal to.
Some languages use !=

Activity 1.25

a) What are the two main characteristics of any data item?
b) When data is input, from where is its value obtained?
c) Give an example of a relational operator.

Hands On AppGameKit Studio Volume 1: Algorithms 27

Counting

In our guessing game, we might want to know how many guesses it takes to come up
with the correct value. We can do this by modifying our previous algorithm as
follows:

 Player 1 thinks of a number between 1 and 100
 Set count to zero
 REPEAT
 Player 2 makes an attempt at guessing the number
 Add 1 to count
 IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
 ENDIF
 UNTIL player 2 guesses correctly
 Player 1 states the value of count

The three new statements are typical of any algorithm that performs a count:

■ Initialise the count to zero.

■ Add 1 to the count each time the operation being counted occurs.

■ State the value of the count when counting has ended.

Totalling

In Activity 1.23 we described the logic of a simple card game in which cards were
turned over until an Ace or a King was encountered. Let’s extend this by counting the
total value of the cards turned but excluding the Ace or King which terminates the
process. We can perform this using the following changes to the earlier logic:

Set total to zero
Turn over card
 WHILE NOT card is Ace AND NOT card is KING DO
 Add card value to total
 Turn over card
 ENDWHILE
 State value of total

As we can see, there is very little difference between the logic of totalling and that of
counting. In fact, the only difference is the value being added to the variable.

Activity 1.26

Modify the card-totalling algorithm given above so that not only the total but
also the number of cards turned (excluding the final card) is calculated and
stated.

Activity 1.27

Load and run the app CardAlgorithm.exe which is in AGK/Resources/Ch01/
CardAlgorithm of the support files you downloaded earlier.
Note how the statements are executed and the variables change value.

28 Hands On AppGameKit Studio Volume 1: Algorithms

Levels of Detail
When we start to write an algorithm in English, one of the things we need to consider
is exactly how much detail should be included. For example, we might describe how
to change a flat tyre on a car as:

 Prepare car
 Remove wheel which has flat tyre
 Fit new wheel
 Ensure new tyre is at correct pressure
 Store any equipment used

However, this lacks enough detail for anyone unfamiliar with the operation. To help,
we could replace the first statement Prepare car with:

Park safely on level ground
Switch off the engine
Put the car in appropriate gear
Pull on the handbrake

More detail could be added to the other original statements in the same way.

This approach of starting with a less detailed sequence of instructions and then,
where necessary, replacing each of these with more detailed instructions can be used
to good effect when tackling long and complex problems. By using this technique,
we are defining the solution to the original problem as an equivalent sequence of
tasks before going on to create a set of more detailed instructions on how to handle
each of these tasks. This divide-and-conquer strategy is known as stepwise
refinement.

Now that we’ve covered the idea behind stepwise refinement, let’s have a look at the
complete solution to creating an algorithm for changing a flat tyre:

Outline Solution:

 1. Prepare car
 2. Remove wheel which has flat tyre
 3. Fit new wheel
 4. Ensure new tyre is at the correct pressure
 5. Store any equipment used

This is termed a LEVEL 1 solution.

As a guideline, we should aim for a LEVEL 1 solution with between 4 and 12
instructions. Notice that each instruction has been numbered. This is merely to help
with identification during the stepwise refinement process. Before going any further,
we must assure ourselves that this is a correct and full (though not detailed) description
of all the steps required to tackle the original problem. If we are not happy with the
solution, then changes must be made before going any further. Next, we examine
each statement in turn and determine if it should be described in more detail. Where
this is necessary, rewrite the statement to be dealt with, and below it, give the more
detailed version. For example, Prepare car would be expanded thus:

 1. Prepare car
 1.1 Park safely on level ground
 1.2 Switch off the engine
 1.3 Put the car in appropriate gear
 1.4 Pull on handbrake

Hands On AppGameKit Studio Volume 1: Algorithms 29

The numbering of the new statement reflects that they are the detailed instructions
pertaining to statement 1. Also note that the number system is not a decimal fraction,
so if there were to be many more statements they would be numbered 1.6, 1.7, 1.8,
1.9, 1.10, 1.11, etc.

It is important that these sets of more detailed instructions describe how to perform
only the original step being examined - they must achieve no more and no less.
Sometimes the detailed instructions will contain control structures such as IFs,
WHILEs or FORs. Where this is the case, the whole of that control structure must be
included in the detailed instructions for that task. Having satisfied ourselves that the
more detailed breakdown is correct, we proceed to the next statement from the
original solution.

 2. Remove wheel which has a flat tyre
 2.1 Remove any hub cap
 2.2 Loosen wheel nuts
 2.3 Jack up the car
 2.4 Remove wheel

To fit the new wheel, the extra detail is:

 3. Fit new wheel
 3.1 Place new wheel on car
 3.2 Replace wheel nuts
 3.3 Lower car
 3.4 Tighten wheel nuts

Control structures can be added where necessary. In the next breakdown we use
WHILE and IF in the more detailed description:

 4. Ensure new tyre is at correct pressure
 4.1 Check tyre pressure
 4.2 WHILE pressure not correct DO
 4.3 IF pressure too low THEN
 4.4 Pump some air into the tyre
 4.5 ELSE
 4.6 IF pressure too high THEN
 4.7 Release some air from the tyre
 4.8 ENDIF
 4.9 ENDIF
 4.10 Check tyre pressure
 4.11 ENDWHILE

But not every statement from a level 1 solution needs to be expanded. For example,
we may decide that Store any equipment used is sufficient detail for step 5, therefore
no further breakdown is required.

Finally, we can describe the solution to the original problem in more detail by
substituting the statements in our LEVEL 1 solution by their more detailed equivalent:

 1.1 Park safely on level ground
 1.2 Switch off the engine
 1.3 Put the car in appropriate gear
 1.4 Pull on handbrake
 2.1 Remove any hub cap
 2.2 Loosen wheel nuts
 2.3 Jack up the car
 2.4 Remove wheel
 3.1 Place new wheel on car
 3.2 Replace wheel nuts
 3.3 Lower car
 3.4 Tighten wheel nuts
 4.1 Check tyre pressure

30 Hands On AppGameKit Studio Volume 1: Algorithms

 4.2 WHILE pressure not correct DO
 4.3 IF pressure too low THEN
 4.4 Pump some air into the tyre
 4.5 ELSE
 4.6 IF pressure too high THEN
 4.7 Release some air from the tire
 4.8 ENDIF
 4.9 ENDIF
 4.10 Check tyre pressure
 4.11 ENDWHILE
 5. Store any equipment used

This is a LEVEL 2 solution. Note that a level 2 solution includes any LEVEL 1
statements which were not given more detail (in this case, Store any equipment used).

For some more complex problems it may be necessary to repeat this process to more
levels before sufficient detail is achieved. For example, we might break down the
statement 1.1 Park safely on level ground to

 1.1.1 Stop car out of the way of traffic on level ground
 1.1.2 IF you are near passing traffic THEN
 1.1.3 Turn on your hazard lights
 1.1.4 ENDIF

Here a level 2 statement has been broken down into level 3 statements. To create a
complete level 3 algorithm, this process would be continued for any other level 2
statements that needed to be expanded to give more detail. When complete, the
appropriate statements are collected together, just as we did to create the level 2
description, to produce a level 3 breakdown.

Activity 1.28

The game of battleships involves two players. Each player draws two 10 by 10
grids. Each of these have columns lettered A to J and rows numbered 1 to 10. In
the first grid each player marks the position of warships. Ships are added as
follows:
 1 aircraft carrier 4 squares
 2 destroyers 3 squares each
 3 cruisers 2 squares each
 4 submarines 1 square each
The squares of each ship must be adjacent and must be vertical or horizontal.
The first player now calls out a grid reference. The second player responds to
the call by saying HIT or MISS. HIT is called if the grid reference corresponds
to a position of a ship. The first player then marks this result on his second grid
using an O to signify a miss and X for a hit (see diagram below).

A B C D E F G H I J A B C D E F G H I J

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

A A A A

C C

C C

S

D

D

D

C

C

S

S

S

O

O

X X X

O

D D D

Vessels are positioned
in the left-hand grid

Results of guesses are
placed in the right-hand grid

Hands On AppGameKit Studio Volume 1: Algorithms 31

Checking for Errors
In this section we have a look at how a paper-based algorithm can be checked for
errors. Although now outdated – most programmers get the computer to do this type
of work – it shows the type of strategy employed by a compiler’s debugger when
checking for errors in a program’s code.

Once we’ve created our algorithm we would like to make sure it is correct.
Unfortunately, there is no foolproof way to do this! But we can at least try to find any
obvious errors or omissions in the set of instructions we have created. This type of
error is known as a logic error. We do this by going back to the original description
of the task our algorithm is attempting to solve and work through the algorithm using
imagined values. For example, let’s assume we want to check our number guessing
game algorithm we created earlier. In the last version of the game we allowed the

Activity 1.26 (continued)

If the first player achieves a HIT then he continues to call grid references
until MISS is called. In response to a HIT or MISS call the first player marks
the second grid at the reference called: O for a MISS, X for a HIT. When the
second player responds with MISS the first player’s turn is over, and the second
player has his turn.

The first player to eliminate all segments of the opponent’s ships is the winner.
However, each player must have an equal number of turns, and if both sets of
ships are eliminated in the same round the game is a draw.

The algorithm describing the task of one player is given in the instructions
below. Create a LEVEL 1 algorithm by assembling the lines in the correct
order, adding line numbers to the finished description.
 Add ships to left grid
 UNTIL there is a winner
 Call grid position(s)
 REPEAT
 Respond to other player’s call(s)
 Draw grids

To create a LEVEL 2 algorithm, some of the above lines will have to be
expanded to give more detail. More detailed instructions are given below
for the statements Call grid position(s) and Respond to other player’s call(s). By
reordering and numbering the lines below create LEVEL 2 details for these two
statements.
 UNTIL other player misses
 Mark position in second grid with X
 Get other player’s call
 Get reply
 Get reply
 ENDIF
 Call HIT
 Call MISS
 Mark position in second grid with O
 WHILE reply is HIT DO
 Call grid reference
 Call grid reference
 IF other player’s call matches position of ship THEN
 ENDWHILE
 REPEAT
 ELSE

32 Hands On AppGameKit Studio Volume 1: Algorithms

second player to make as many guesses as required until he came up with the correct
answer. The first player responded to each guess by saying either “Too low”, “Too
high” or “Correct”.

To check our algorithm for errors we must come up with typical values that might be
used when carrying out the set of instructions. This set of values should be chosen so
that each possible result is achieved at least once. For our game, we have three results
possible each time a guess is made. These are “Too low”, “Too high” or “Correct”.
As well as making up values, we need to predict what response our algorithm should
give to each value used. Hence, if the first player thinks of the value 42 and the
second player guesses 75, then the first player will respond to the guess by saying
“Too high”. Our set of test values must evoke each of the possible results from our
algorithm. One possible set of values and the responses for our game are shown in
FIG-1.20.

Once we’ve created test data, we need to work our way through the algorithm using
that test data and checking that we get the expected results. This is known as a dry
run or desk checking.

The algorithm for the number game is shown below, this time with instruction
numbers added.

1. Player 1 thinks of a number between 1 and 100
2. REPEAT
3. Player 2 makes an attempt at guessing the number
4. IF guess = number THEN
5. Player 1 says “Correct”
6. ELSE
7. IF guess < number THEN
8. Player 1 says “Too low”
9. ELSE
10. Player 1 says “Too high”
11. ENDIF
14. ENDIF
14. UNTIL guess = number

Next we create a table (called a trace table) with the headings as shown in FIG-1.21.

 Test Data Expected Results

number = 42
guess = 75 Says “Too high”
guess = 15 Says “Too low”
guess = 42 Says “Correct”

FIG-1.20

Test Data for the
Number Guessing Game
Algorithm

Instruction Condition OutputVariables
number guess

T/F

Contains the
number of the

instruction which
has been executed

Any condition
contained in the

statement is
written here

The value
stored in each

variable is given
here

Any value
output is

shown here

The result of the condition
is written here as T or F

FIG-1.21

A Trace Table

Hands On AppGameKit Studio Volume 1: Algorithms 33

Now we work our way through the statements in the algorithm filling in a line of the
trace table for each instruction.

Instruction 1 is for player 1 to think of a number. Using our test data, that number will
be 42, so our trace table starts with the line shown in FIG-1.22.

The REPEAT word comes next. Although this does not cause any changes,
nevertheless a 2 should be entered in the next line of our trace table. Instruction 3
involves player 2 making a guess at the number (this guess will be 75 according to
our test data). After 3 instructions our trace table is as shown in FIG-1.23.

Instruction 4 is an IF statement containing a condition. This condition and its result
are written into columns 2 and 3 as shown in FIG-1.24.

Because the condition is false, we now jump to instruction 6 (the ELSE line) and on
to 7. This is another IF statement and our table now becomes that shown in FIG-1.25.

Since this second IF statement is also false, we move on to statements 9 and 10.
Instruction 10 causes output (speech) and hence we enter this in the final column as
shown in FIG-1.26.

FIG-1.22

Working through a
Trace 1

 Instruction Condition T/F Variables Output

1 42

number guess

FIG-1.23

Working through a
Trace 2

 Instruction Condition T/F Variables Output

1 42
2
3 75

number guess

FIG-1.24

Working through a
Trace 3

 Instruction Condition T/F Variables Output

1 42
2
3 75
4

number guess

guess = number F

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F

number guess

guess = number

 guess < number

FIG-1.25

Working through a
Trace 4

34 Hands On AppGameKit Studio Volume 1: Algorithms

Now we move on to statements 11,12 and 13 as shown in FIG-1.27.

Since statement 13 contains a condition which is false, we return to statement 2 and
then onto 3 where we enter 15 as our second guess (see FIG-1.28).

This method of checking is known as desk checking or dry running.

FIG-1.26

Working through a
Trace 5

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high

number guess

guess = number

 guess < number

FIG-1.27

Working through a
Trace 6

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F

number guess

guess = number

 guess < number

guess = number

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F
2
3 15

number guess

guess = number

 guess < number

guess = number

FIG-1.28

Working through a
Trace 7

Activity 1.29

Create your own trace table for the number-guessing game and, using the same
test data as given in FIG-1.20 complete the testing of the algorithm.

Were the expected results obtained?

Activity 1.30

Load and run Remember01.exe (part of the downloaded Ch01 support files).

Use it to remind you of the points covered in this chapter.

Hands On AppGameKit Studio Volume 1: Algorithms 35

Summary
■ Computers can perform many tasks by executing different programs.

■ An algorithm is a sequence of instructions which solves a specific problem.

■ A program is a sequence of computer instructions which usually manipulates
data and produces results.

■ Three control structures are used in programs :

 Sequence
 Selection
 Iteration

■ A sequence is a list of instructions which are performed one after the other.

■ Selection involves choosing between two or more alternative actions.

■ Selection is performed using the IF statement.

■ There are three forms of IF statement:

 IF condition THEN
 instructions
 ENDIF

 IF condition THEN
 instructions
 ELSE
 instructions
 ENDIF

 IF
 condition 1:
 instructions
 condition 2:
 instructions
 condition x :
 instructions
 ELSE
 instructions
 ENDIF

■ Iteration is the repeated execution of one or more statements.

■ Iteration is performed using one of three instructions:

 FOR number of iterations required DO
 instructions
 ENDFOR

 REPEAT
 instructions
 UNTIL condition

 WHILE condition DO
 instructions
 ENDWHILE

■ A condition is an expression which is either true or false.

■ Simple conditions can be linked using AND or OR to produce a complex
condition.

■ The meaning of a condition can be reversed by adding the word NOT.

36 Hands On AppGameKit Studio Volume 1: Algorithms

■ Data items (or variables) hold the information used by the algorithm.

■ Data item values may be:

 Input
 Calculated
 Compared
 or Output

■ Calculations can be performed using the following arithmetic operators:

 Multiplication *
 Addition +
 Division /
 Subtraction -

■ Comparisons can be performed using the relational operators:

 Less than <
 Less than or equal to <=
 Greater than >
 Greater than or equal to >=
 Equal to =
 Not equal to <>

■ In programming, a data item is referred to as a variable.

■ Counting involves initialising a variable to zero and incrementing it each time
the event being counted occurs.

■ Totalling involves initialising a variable to zero and adding a specified value to
the total each time a new value is received.

■ The divide-and-conquer strategy of stepwise refinement can be used when
creating an algorithm.

■ LEVEL 1 solution gives an overview of the sub-tasks involved in carrying out
the required operation.

■ LEVEL 2 gives a more detailed solution by taking each sub-task from LEVEL
1 and, where necessary, giving a more detailed list of instructions required to
perform that sub-task.

■ Not every statement needs to be broken down into more detail.

■ Further levels of detail may be necessary when using stepwise refinement for
complex problems.

■ An algorithm can be checked for errors or omissions using a trace table.

Hands On AppGameKit Studio Volume 1: Algorithms 37

Support Material for this Chapter

Algorithm Constructor (TriLogic.exe)
Screen Shot

Overview

This AGK BASIC program allows you to construct an algorithm for moving the three
counters (C1, C2 and C3) from position P1 to position P3. The algorithm must obey
the rule that a larger counter cannot be placed on a smaller one.

User Instructions

Press the Start button (visible in the top right of the Game area when the program
first starts). This moves all three counters to P1 on the playing area .

Click on the appropriate tokens to construct an instruction. All instructions
should be of the form

MOVE counter TO position

and are assembled in the Instructions area in response to the tokens selected.

If the instruction is invalid an error message will appear. Click on the error message
to remove it and redo your instruction.

When a correct command is entered, the selected counter will be moved in the Game
area.

Once a move is complete, continue building instructions until all the counters are at
position P3.

38 Hands On AppGameKit Studio Volume 1: Algorithms

Download

The app file is called TriLogic.exe and can be found in the AGK/Resources/Ch01/
TriLogic folder of the download material for this book.

Algorithm Tracer (CardAlgorithm.exe)
Screen Shot

Overview

This AGK BASIC program shows the step-by-step execution of an algorithm,
highlighting the line which has just been executed.

The algorithm (shown in the Algorithm area of the screen) counts the number of
playing cards turned over before an Ace or a King is encountered. The card turning
is shown in the Game area. The total face value of those cards is also calculated.
These two values are displayed in the Variables part of the screen.

The cards are shuffled each time the program is run, so the results will be different
every time.

User Instructions

When the program begins, no statement is highlighted.

Press the Step button. This will execute the highlight and execute the first command.

The effect created by executing a command will result in a change in the Variables
area, a card being turned in the Game area, a condition being tested, or simply the
moving of the highlighter to the next line.

Continue to press the Step button until all the statements in the algorithm have
been carried out.

Hands On AppGameKit Studio Volume 1: Algorithms 39

Download

The app file is called CardAlgorithm.exe and can be found in the AGK/Resources/
Ch01/CardAlgorithm folder of the download material for this book.

Reviewer (Remember01.exe)
Screen Shot

Overview

This program displays a set of cards summarising various topics covered in this
chapter.

User Instructions

When the program starts up a single card is displayed showing the main topics
covered in the form of a mindmap. This is the front card of the pack.

Click on the front card. This will move the card pack to the bottom left of the screen
and deal all the cards into the centre of the screen.

Click on a card title to have it expand on the right hand side of the screen.

Click on a card’s arrow to see the other side of a card.

Click on a card’s title to have it return to its position in the dealt pack.

Click on the front card (positioned at the bottom left) to return all the cards to the
pack.

Download

The app file is called Remember01.exe and can be found in the AGK/Resources/
Ch01/Remember01 folder of the download material for this book.

40 Hands On AppGameKit Studio Volume 1: Algorithms

Solutions
Activity 1.1

No solution required.

Activity 1.2
A second solution is:

Fill A A = 3 B = 0
Pour A into B A = 0 B = 3
Fill A A = 3 B = 3
Fill B from A A = 1 B = 5
Empty B A = 1 B = 0
Pour A into B A = 0 B = 1
Fill A A = 3 B = 1
Pour A into B A = 0 B = 4

Activity 1.3
A possible solution to the river crossing problem:

Row to other side with goat
Return to first side
Row over with wolf
Return to first side with goat
Row over with cabbage
Return to first side
Row over with goat

Activity 1.4
A possible solution to the TriLogic game is:

Move C3 to P3
Move C2 to P2
Move C3 to P2
Move C1 to P3
Move C3 to P1
Move C2 to P3
Move C3 to P3

Activity 1.5
Player 1 thinks of a number
Player 2 makes a guess at the number
IF guess matches number THEN
 Player 1 says “Correct”
ENDIF
Player 1 states the value of the number

Activity 1.6
Updated algorithm for Snakes and Ladders:

Roll die
Move counter forward by the number thrown
IF counter stops at the bottom of a ladder THEN
 Move counter to top of ladder
ENDIF
IF counter stops at the head of a snake THEN
 Move counter to tail of snake
ENDIF
Pass die to next player

Activity 1.7
Algorithm for Player 2 response in Hangman:

IF letter is in word THEN
 Add letter at appropriate position(s)
ELSE
 Add part to hanged man
ENDIF

Activity 1.8

Activity 1.9

Activity 1.10
IF W key pressed THEN
 Move character forward
ELSE
 IF S key pressed THEN
 Move character backward
 ELSE
 IF M key pressed THEN
 Move character to the right
 ELSE
 IF N key pressed THEN
 Move character to the left
 ELSE
 IF U key pressed THEN
 Make character jump up
 ELSE
 IF space key pressed THEN
 Fire weapon
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 ENDIF

Activity 1.11
IF
 you know the phrase:
 Make guess at phrase
 there are many unseen letters:
 Guess a consonant
ELSE
 Buy a vowel
ENDIF

Activity 1.12
The two statements which make up the loop body are:

Pick out ball
Call out number on the ball

IF guess matches number THEN
 Player 1 says “Correct”
ELSE
 IF guess is less than number THEN
 Player 1 says ”Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
ENDIF

false

true

executed

IF guess matches number THEN
 Player 1 says “Correct”
ELSE
 IF guess is less than number THEN
 Player 1 says ”Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
ENDIF

false

true

executed

Hands On AppGameKit Studio Volume 1: Algorithms 41

 Activity 1.13
Only one line, the FOR statement, would need to be changed,
the new version being:

 FOR 10 times DO

Activity 1.14
In fact, only the first line of our algorithm is not repeated, so
the lines that need to be repeated are:

Player 2 makes an attempt at guessing the number
IF guess matches number THEN
 Player 1 says “Correct”
 ELSE
 IF guess is less than number THEN
 Player 1 says “Too low”
 ELSE
 Player 1 says “Too high”
 ENDIF
ENDIF

Activity 1.15
The FOR loop forces the loop body to be executed exactly 7
times. If the player guesses the number in less attempts, the
algorithm will nevertheless continue to ask for the remainder
of the 7 guesses.

Later, we’ll see how to solve this problem.

Activity 1.16
FOR 52 times DO
 Look at card at top of deck
 IF its value is between 1 and 7 THEN
 Place in left-hand pile
 ELSE
 Place in right-hand pile
 ENDIF
ENDFOR

We could have started with the line

 For each card DO

Activity 1.17
 REPEAT
 Turn over top card
 UNTIL card is an Ace

Activity 1.18
Roll both dice
WHILE dice values don’t match DO
 Choose die with lower value
 Throw chosen die
ENDWHILE

Activity 1.19
a) Cannot apply. Too young; first condition false.
b) Cannot apply. Too short; second condition false.
c) Can apply. Both conditions true.

Activity 1.20
Other possibilities are:

Both conditions are true
condition 1 is true and condition 2 is false

Activity 1.21
IF Ctrl key pressed AND O key pressed THEN
 Request filename
ENDIF

Activity 1.22
IF double thrown OR fine paid OR used “Get Out of
Jail Free” card THEN
 Player gets out of jail
ENDIF

Activity 1.23
 Turn over card
 WHILE NOT card is Ace AND NOT card is KING DO
 Turn over card
 ENDWHILE

Activity 1.24
a) Boolean expression.
b) Boolean operators are: AND, OR, and NOT.
c) Both conditions must be true.
d) NOT has a higher priority and will be performed first.
e) By enclosing the OR operator and its operands in
 parenthesis, that operation will be performed before the
 AND.

Activity 1.25
a) Its name and value.
b) From outside the system. In a computerised setup, this is
 often entered from a keyboard.
c) The relational operators are:
 < (less than)
 <= (less than or equal to)
 > (greater than)
 >= (greater than or equal to)
 = (equal to)
 <> (not equal to)

Activity 1.26
Algorithm with both count and total:

Set count to zero
Set total to zero
Turn over card
 WHILE NOT card is Ace AND NOT card is KING DO
 Add card value to total
 Turn over card
 ENDWHILE
 State value of count
 State value of total

Activity 1.27
No solution required.

Activity 1.28
The LEVEL 1 is coded as:

1. Draw grids
2. Add ships to left grid
3. REPEAT
4. Call grid position(s)
5. Respond to other player’s call(s)
6. UNTIL there is a winner

The expansion of statement 4 would become:
4.1 Call grid reference
4.2 Get reply
4.3 WHILE reply is HIT DO
4.4 Mark position in second grid with X
4.5 Call grid reference
4.6 Get reply
4.7 ENDWHILE
4.8 Mark position in second grid with 0

The expansion of statement 5 would become:
5.1 REPEAT

42 Hands On AppGameKit Studio Volume 1: Algorithms

5.2 Get other player’s call
5.3 IF other player’s call matches position of
 ship THEN
5.4 Call HIT
5.5 ELSE
5.6 Call MISS
5.7 ENDIF
5.8 UNTIL other player misses

Activity 1.29

The expected results (as shown in the Test Data table) were
obtained.

Activity 1.30
No solution required.

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F
2
3 15
4 F
6
7 T
8 Too low
11
12
13 F
2
3 42
4 T
5 Correct
12
13

number guess

guess = number

 guess < number

guess = number

guess = number

guess < number

guess = number

guess = number

guess = number T

Hands On AppGameKit Studio Volume 1: Background Intel 43

In this Chapter:

T How Number Systems Work

T The Binary System

T Converting Values between Number Bases

T Floating Point Formats

T Hexadecimal

T Negative Numbers Format

T Octal

T Storing Characters

Background Intel

44 Hands On AppGameKit Studio Volume 1: Background Intel

Number Systems

Introduction
The counting system we use today is the decimal or, more correctly, the denary
system. It uses ten different symbols (0,1,2,3,4,5,6,7,8,9) to represent any numeric
value. The number of digits used in a number system relates directly to the base (also
known as the radix) of that system, hence denary is a base 10 number system.

In all modern number systems the position of a digit affects the value represented.
Hence, 19 and 91, although containing the same digits, represent two different values.
When we start school we are often taught the theory of our positional number system
by the use of column headings:

 Thousands Hundreds Tens Units

To represent a value we merely write the required numeric symbol in each of the
appropriate columns. So seven hundred and twelve is represented by placing the
appropriate digit under the correct column:

Thousands Hundreds Tens Units
 7 1 2

If you know a little more mathematics, then the column identities can be changed to
powers of 10:

 103 102 101 100
 7 1 2

Note that the column values are based on the number system radix. So we can
generalise to say that for a number system using base R, the column values can be
represented by

 R3 R2 R1 R0

Computers and the Binary System
Because of the modern computer’s memory design, all the information it holds, be it
program instructions, numbers, text, images, sounds or video, are stored as a sequence
of numeric codes.

The fundamental electronic component of computer memory is the bit. A bit acts
rather like a light switch - it can be set to one of only two positions. Rather than
consider these two positions as off and on, we treat them as numeric values, 0 and 1.

There’s not much scope to store large numbers when you have only a single bit to
play with, so computer memory design joins the bits into groups of 8. A group of 8
bits is known as a byte. Half a byte (4 bits) is sometimes known as a nybble.

If we think of the 8 bits of a byte as the columns of a number, and knowing that each
bit/column can contain only a 0 or a 1, then we can see that the computer has to make
use of a base 2 number system. The term binary means consisting of two parts, and
so this number system is known as the binary number system.

FIG-2.1 shows an abstract visual representation of a byte and the values assigned to

Hands On AppGameKit Studio Volume 1: Background Intel 45

each column.

From this we can work out that to represent the decimal value 14 in binary, we would
write

 128 64 32 16 8 4 2 1
 1 1 1 0

Actually, in the computer, all bits must be 0 or 1 so the actual pattern stored within a
byte would include leading zeros (00001110) but for the moment we’ll omit the
leading zeros from our discussions on binary numbers.

Since working in more than one number base at the same time can lead to confusion,
the base of a number is often added as a subscript. For example, we can state that 14
in the decimal system is written as 1110 in the binary system with the line

 1410 = 11102

Converting From Decimal to Binary

If we want to convert a decimal number to binary, we need to work out what numbers
from the binary system column values add up to our decimal number. In the case of,
for example, the value 23, it can be constructed from 16 + 4 + 2 + 1 (all binary
column values). So we can say that 23 is written in binary as

128 64 32 16 8 4 2 1
 1 0 1 1 1

In other words,

 2310 = 101112

Although this approach is easy enough to use for small numbers, it gets a bit harder
with larger values, so a more methodical approach to converting decimal values to
binary is required.

That approach involves dividing the decimal number to be converted by 2, writing
down the quotient and remainder, then continuing the process, always dividing the
quotient by 2. When the quotient reaches zero, the remainders are written in reverse
order (latest one first) and this gives us the binary equivalent of the original decimal
value.

FIG-2.2 shows how this method is used to convert 1310 to binary.

FIG-2.1

The Structure of a
Byte

27 26 25 24 23 22 21 20

byte

128 64 8 4 216 132

One bit

46 Hands On AppGameKit Studio Volume 1: Background Intel

Perhaps it is not blindingly obvious why this approach gives us the result we are after
but if we go through the process again using 13 pebbles, then it should become
clearer (see FIG-2.3).

FIG-2.2

Converting Decimal
to Binary

We start by dividing the decimal number we
want to convert by 2, writing down the
quotient and remainder.

Next, we divide the quotient by 2, again
writing down the new quotient and remainder.

The process is repeated until the quotient is
zero.

Finally, by rewriting the remainders obtained
in reverse order, we get the binary equivalent
of the original value.

2 13
 6 r 1

quotient

quotient zero

remainder

2 13
2 6 r 1
 3 r 0

2 13
2 6 r 1
2 3 r 0
2 1 r 1
 0 r 1

2 13
2 6 r 1
2 3 r 0
2 1 r 1
 0 r 1

1101

Binary
equivalent of

decimal 13

FIG-2.3

Why Division by 2
Works

If we start with 13 pebbles and group them
into pairs, we are left with 6 groups of 2 and
1 remaining pebble.

If we now take two pairs and group these, we
get 3 groups of four as well as our single
pebble.

Pairing off our groups of 4 we get one group
of 8 , a remaining group of 4 and the single
pebble.

Each group size is a power of 2 (1, 4 and 8).
These sizes tell us which binary columns
should contain a 1.

13 / 2 = 6 rem 1

3 / 2 = 1 rem 1

6 / 2 = 3 rem 0

8 4 2 1
1 1 0 1

Hands On AppGameKit Studio Volume 1: Background Intel 47

Converting from Binary to Decimal

To convert from binary to decimal, take the value of each column that contains a 1
and add these values together to get the decimal equivalent (see FIG-2.4).

Converting Fractions
Decimal Fractions to Binary

So far we have looked at converting only whole numbers but we also need to be able
to represent decimal fractions in binary.

In the decimal system, column values to the right of the decimal point are

 10-1 10-2 10-3 etc.

alternatively written as
 1 1 1 __ ___ ____
 10 100 1000

Column values to the right of the binary point, on the other hand, have the values

 2-1 2-2 2-3

Activity 2.1

Convert the following decimal values to binary using the division by 2 method
described earlier.

a) 19 b) 72 c) 63

FIG-2.4

Binary to Decimal

0 0 0 0 1 1 0 1

1 x 20

1 x 22

1 x 23

= 1
= 4
= 8

13

27 26 25 24 23 22 21 20

Activity 2.2

Convert the following binary values to decimal using the method shown in FIG-
2.4.

a) 00101001 b) 11111111 c) 10101010

Activity 2.3

What is the largest value (binary and decimal) that can be stored in a nybble?

48 Hands On AppGameKit Studio Volume 1: Background Intel

or
 1 1 1 _ _ _
 2 4 8

or

 0.5 0.25 0.125

To convert a decimal integer, we had to find how that number could be expressed in
terms of values which were exact powers of 2. For example, we saw that 13 could be
expressed as 8 + 4 +1 (23 + 22 + 20). To convert a decimal fraction to a binary fraction
we need to find the same thing; powers of 2 that express the original value. The only
difference this time is that the power value will be negative since the values involved
are less than one. For example, the value 0.625 can be expressed as 0.5 + 0.125 (2-1

+ 2-3).

This time the standardised conversion process involves continually multiplying
fractions by 2 and eliminating the integral part after each multiplication. The steps
for converting 0.812510 to binary are shown in FIG-2.5.

When we first multiply by 2, if the number to be converted is 0.5 or greater, we will
get a 1 in the integral part of the answer. This tells us that there was a 0.5 component
in the original number. By ignoring that integral part in the next calculation we have,
in effect, removed the 0.5 value from our calculation. The next multiplication (at this
point we have multiplied by 4 — multiplication by 2 twice), causes any 0.25
component in the original value to produce an integral of 1. This integral is then
ignored in the next calculation.

FIG-2.5

Converting Decimal
Fractions to Binary

We start by multiplying the fraction to be
converted by 2.

The fractional part of the result is then
multiplied by 2.

Again the fractional part of the result is
multiplied by 2. This process continues until
the fractional part is zero or the degree of
accuracy required is reached.

Now, we start with the binary point and then
read the integral parts of each result (starting
at the top) to find the binary equivalent.

0.8125 x 2 = 1.625

0.625 x 2 = 1.25

0.25 x 2 = 0.5

0.5 x 2 = 1.0

0.8125 x 2 = 1.625

Value to be
converted

0.8125 x 2 = 1.625

0.625 x 2 = 1.25

0.8125 x 2 = 1.625

0.625 x 2 = 1.25

0.25 x 2 = 0.5

0.5 x 2 = 1.0 .11012zero

Hands On AppGameKit Studio Volume 1: Background Intel 49

Unlike integer values, when we convert a decimal fraction to a binary one, we have
no guarantee that the binary fraction we produce will be exactly equivalent to the
decimal fraction. In these cases, we must convert to the required number of binary
places.

To convert a number which has integral and fractional parts, convert each part
separately as if they were two separate values.

Binary Fractions to Decimal

Binary fraction to decimal does not require a new approach. It is handled in exactly
the same way as binary whole numbers were converted. The only difference in this
case is the column values involved (see FIG-2.6).

Hexadecimal
Hexadecimal (often shortened to hex) is another number system widely used in
computing. This number system has the base 16 so it follows that there must be 16
different digits used in the representation of hexadecimal values.

These 16 digits are formed from the 10 digits of the decimal system and the first 6
letters of the alphabet So in hexadecimal 0 to 9 represents the normal decimal values
0 to 9 but A represents 10, B 11, C 12, D 13, E 14 and F 15. With a base 16 number
system the column values for this system are:

 163 162 161 160
or
 4096 256 16 1

Converting from Decimal to Hexadecimal

Conversion from decimal to hexadecimal is little different from the conversion of
decimal to binary. However, this time, instead of dividing by 2, we divide by 16.
FIG-2.7 shows how the number 13110 is converted to hexadecimal.

Activity 2.4

Convert the decimal value 0.3125 to a binary fraction.

FIG-2.6

Converting Binary
Fractions to Decimal

1 x 2-8

1 x 2-6

1 x 2-5

= 0.00390625
= 0.015625
= 0.03125

1 x 2-3 = 0.125

Activity 2.5

Convert the binary value 0.100101 to a decimal fraction.

FIG-2.7

Converting Decimal
to Hexadecimal 1

16 131
16 8 r 3
 0 r 8

8316

50 Hands On AppGameKit Studio Volume 1: Background Intel

Things are slightly more complicated if the remainder is greater than 9, since we have
to remember to convert the remainder to the appropriate hexadecimal letter (see
FIG-2.8).

Converting from Hexadecimal to Decimal
Again the conversion from hexadecimal to decimal is similar to that for binary to
decimal; the value in a given column is multiplied by the column value. The only
change this time is that a wider range of digits may appear in any one column and
that the column values are different.

FIG-2.9 shows the value B416 being converted to decimal.

Converting from Binary to Hexadecimal

Although the computer uses binary for everything it does, we humans find that
number system a bit long-winded since it takes a large number of digits to represent
even relatively small values. The other major problem we have with binary is trying
to copy out values correctly; with only 0’s and 1’s, its all too easy to make a mistake
when copying so many digits.

Using hexadecimal gives us a way of avoiding writing values in binary and yet, at
the same time, making it easy to convert to and from binary when necessary.

In hexadecimal, F is the highest value digit being equal to 1510. Now 15 also happens
to be the maximum value that can be represented in the four bits of a nybble. This

FIG-2.8

Converting Decimal
to Hexadecimal 2

16 180
16 11 r 4 4
 0 r 11 B

B416

11 is represented by
B in hex

Activity 2.6

Convert the following decimal values to hexadecimal:

a) 97 b) 212 c) 255

FIG-2.9

Converting
Hexadecimal to
Decimal

B 4

4 x 160

B x 161
= 4
= 176

180
B16 is 1110

so the calculation is
1110 x 1610

Activity 2.7

Convert the following hexadecimal values to decimal:

a) 2C b) A6 c) DE

Hands On AppGameKit Studio Volume 1: Background Intel 51

means that one hexadecimal digit can be used to represent four bits; two hexadecimal
digits can represent a byte.

FIG-2.10 shows the steps involved in converting the 8 bits of a byte to hexadecimal.

Converting from Hexadecimal to Binary

This is nothing more than a reverse of the previous process. Each hexadecimal digit
is converted to decimal and then to a 4 bit value. The process is shown in FIG-2.11.

FIG-2.10

Converting Binary to
Hexadecimal

The digits held in the byte are first split into to
 groups of four.

And each group converted to decimal.

Any decimal value greater than 9 is converted
to the equivalent hex letter.

This gives us the final result.

01011101

5 13

5

D

13

0101 1101

0101 1101

01011101 = 5D2 16

Activity 2.8

Convert the following binary values to hexadecimal:

a) 01000111 b) 11111111 c) 11001011

E4

E 4

14 4

1110 0100

E416 = 111001002

Separate each
hex digit

Convert digit
to decimal

Convert decimal
to binary

FIG-2.11

Converting Hexadecimal
to Binary

52 Hands On AppGameKit Studio Volume 1: Background Intel

Octal
Octal is a base 8 number system using the digits 0 to 7. At one time some computers
had their memory organised into 6 bit blocks rather than the usual 8. Just as
hexadecimal is used as a convenient way of representing 4 bits, so octal was used to
represent 3 bits. Two octal digits specifying the contents of 6 bits. Although little
used now, octal is included here simply for completeness and because there are
options in AGK BASIC to allow octal values to be used.

Since octal uses the base 8, column values would be:

 84 83 82 81 80

To convert binary to octal we split the binary value into groups of 3 bits (starting from
the right) then convert each group to its octal equivalent. This process is reversed to
convert octal to binary.

Storing Numbers
The bits within a byte are identified in diagrams by allocating the exponent value of
the appropriate number column (see FIG-2.12).

The right-hand bit (bit 0) is known as the least-significant bit since it is of the least
numeric value; the left-hand bit is the most-significant bit.

Activity 2.9

Convert the following hexadecimal values to binary:

a) AB b) 8C c) 9A

Activity 2.10

a) Using a division by 8 approach, convert the decimal value 147 to octal.

b) Convert the octal value 75 to decimal.

Activity 2.11

a) Convert the binary value 101110 to octal.

b) Convert 348 to binary.

FIG-2.12

Identifying the Bits
within a Byte

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

Hands On AppGameKit Studio Volume 1: Background Intel 53

Using a single byte, values in the range 010 (000000002) to 25510 (111111112) can be
stored.

When a whole number is stored in a computer’s memory, it will normally occupy
one, two, four or even eight bytes. The more bytes that are allocated to it, the larger
the range of values that can be stored.

Memory is designed in such a way that every byte is allocated a unique address (just
like every house in a street has its own unique address). This means that the computer
can directly access any byte by specifying the address of that byte (see FIG-2.13).

The individual bits within a byte cannot be directly accessed but other methods are
available to determine the contents of any single bit.

When using multiple bytes to store a value, the right-most byte is known as the least-
significant byte; the left-hand one, the most-significant byte.

Using eight bytes, numbers between 0 to 18,446,744,073,709,551,615 can be stored.

It should be noted that in reality it is common practice to store the bytes of a number
in reverse order when written to computer memory (see FIG-2.14).

FIG-2.13

Memory Organisation Memory

Organised in bytes
Memory
Address (in hexadecimal)

0000 : 0000

0000 : 0001

0000 : 0002

FFFF : FFFD

FFFF : FFFE

FFFF : FFFF

This diagram assumes a 32 bit address
but modern architectures allow much more

than this.

FIG-2.14

How an Integer is stored
in Memory

The bytes of an integer value (shown here in
hexadecimal)...

...are often stored in computer memory in
reverse order because of the hardware
design.

0X170ABEFF

Memory
Address
001C:1A00

001C:1A01

001C:1A02

001C:1A03

FF
BE
0A
17

54 Hands On AppGameKit Studio Volume 1: Background Intel

Despite the apparently strange storage format, the hardware automatically handles
the storing and retrieval of the data, ensuring that the original value is always
presented unchanged to any program accessing the value.

Negative Numbers in Binary
From what we’ve seen so far, binary can be used to store huge positive values, but
how can we store a negative number such as -17?

Remembering that absolutely everything in a computer is stored in 0’s and 1’s we
have to be imaginative with our approach to representing negative values. For
example, when storing the number in a single byte, we could reserve one bit to be the
sign of the number with a 0 representing + (positive) and a 1 representing - (negative)
(see FIG-2.15).

At first glance, this might seem to solve our problem. We can represent +7 as
00000111 and -7 as 10000111. Of course, because there are now only 7 bits available
for the magnitude of the number, we’re limited to a range from -127 (11111111) to
+127 (01111111). Another curious thing about this approach is that we have two
ways of representing zero: 00000000 (+0) and 10000000 (-0). However, the biggest
problem with this approach is that adding a negative number to a positive number
doesn’t produce the correct results. For example, we know that

 9 + (-7) = 2

but when we attempt the same thing with our binary values
 00001001 (+9)
 10000111 (-7)

 10010000 (-16)

we arrive at an incorrect result.

One’s Complement

Another possible way of representing a negative value is to make the digits exactly
the opposite of the positive form. So if +7 is written as

 00000111

then -7 becomes
 11111000

We have to be careful not to confuse ourselves if we use this approach.

Of course, we cannot allow a situation where a particular binary pattern — in this

FIG-2.15

Format for Storing
Signed Values

Sign
0 = +
1 = -

number

Activity 2.12

Write down the equivalent of the decimal value -248 using the above system.

Hands On AppGameKit Studio Volume 1: Background Intel 55

case 00000111 — can have an ambiguous value (7 or -248). The solution to this is
again to limit the magnitude of the values allowed. If positive value can only go as
high as 127 then bit 7 (the left-most bit) will always be zero, so when we complement
all the bits to represent a negative value, the left-most bit will always be a one. So,
again, the left-most bit turns out to be our sign bit. When it contains a zero we have
a positive number; when it contains a 1, we have a negative value.

This way of representing negative values is known as 1’s complement form.

So let’s see if 9 + (-7) gives the correct result this time:
 00001001 (+9)
 11111000 (-7)

1 00000001

Notice that the result is 9 bits long, not 8. But this extra, left-hand bit (known as the
overflow bit) is of no consequence to us since there is no room to store it in a single
byte, so it can be eliminated from our result. This leaves us with the value

 00000001 (+1)

This time the result is just 1 out from the correct answer.

In fact, using 1’s complement always gives us a result that is exactly 1 less than the
true result. Well, that’s easily fixed — we just have to do our calculation and then add
1 to whatever result we get.

Two’s Complement

However, another way of dealing with the problem is to add that extra 1 to the
negative value before you start the calculation. This is known as 2s complement
form. So -7 is represented in 2’s complement form by

 11111000 (-7 in 1s complement form)
 +1

 11111001

This time when we do our calculation 9 + (-7) we get
 00001001 (+9)

 11111001 (-7)

 00000010 (2)

At last we have the correct result.

Notice that the left-most bit of the value still acts as a sign bit: 0 when a positive value

Activity 2.13

Using 1’s complement form for the binary values, calculate the result obtained
when performing the following addition 14 + (-5).

Activity 2.14

Using 2’s complement form, redo the calculation 14 + (-5).

56 Hands On AppGameKit Studio Volume 1: Background Intel

is stored, 1 for a negative value.

Two’s complement allows values in the range -128 to + 127 to be stored in a single
byte.

-12810 is stored as 100000002.

When 2s complement form is used to store a value over two bytes, it can store values
in the range -32,678 to +32,767.

Many programming languages (but not AGK BASIC) allow numbers to be stored in
either unsigned (zero and positive numbers only) format or signed (negative, zero
and positive values) format.

In unsigned format all the bits assigned hold the number’s value giving a large range
of positive values, but negative numbers cannot be stored. Signed format uses 2’s
complement, effectively allocating 1 bit for the sign bit with the remaining bits
recording the value. Although this allows negative numbers to be recorded, it halves
the largest possible value that can be stored.

Floating Point Values in Binary
In the decimal system, real numbers (those with a decimal point) can be expressed in
a different way from whole numbers. On paper these type of values are either written
using fixed point notation with a fixed number of digits after the decimal point (e.g.
128.3 — one digit after the decimal point) or in scientific notation (e.g. 1.283E2).

Scientific notation may look a little strange if you haven’t come across it before, but
it is really quite easily understood:

 The letter E stands for the term exponent or x10 raised to the power
 The number to the left of the E is called the significand.
 The number to the right of the E is the exponent value.

The exponent represents the power to which 10 is to be raised. So E01 means 101
or simply 10; E02 means 102 or 100.

To arrive at the number being represented, we perform the calculation

	 significand	x	10exponent

so

 1.283E2

	 =	 1.283	x	102

	 =	 1.283	x	100

 = 128.3

Where we have a negative exponent such as 10-1 or 10-2 then these represent 1/10
(0.1) and 1/100 (0.01) respectively. So a number shown in scientific notation as

 1.67E-3

is

�
The E notation is
most often seen
on a calculator or
computer. When
written by hand, the
E is usually replaced
by x10.

Hands On AppGameKit Studio Volume 1: Background Intel 57

 1.67 x 10-3
 ⇒ 1.67 x 0.001
 ⇒	 0.00167

Of course, we might have written the value 128.3 as .1283E03 or 12.83E1 or 1283E-
01 but the convention is to make sure that the integral part of the significand lies in
the range 1 to 9. When the significand is within this range, it is termed a normalised
significand.

For values less than 1, normalising the significand will mean that the exponent will
be negative. For example,

 0.000013

 ⇒ 1.3E-5

If the number being represented is negative, then the significand is negative:

 -382.19
 ⇒ -3.8219E2

Most software uses the significand-exponent approach for storing real numbers in a
format known as floating-point but, of course, the significand and exponent are held
as binary values.

The standard layout for a 32 bit floating point value is shown in FIG-2.16.

The exact formatting on the computer is slightly different from the decimal version.

■ The exponent is always 127 greater than its true value. This is simply a method
of eliminating the need to use 2’s complement when the true exponent is
negative.

■ The significand is adjusted so its value lies between 1 and 2.

■ The sign bit is 0 if the number is positive; 1 if the number is negative.

The significand itself is always stored in positive form even when the value
represented is negative; 2’s complement is not used. Also, the leading 1 of the
significand is not actually stored in memory; instead, its presence is assumed when
the computer performs any subsequent calculations.

Activity 2.14

Convert the following values to floating point notation.

1. 679.12 2. -32.98 3. -0.00782

Activity 2.15

Rewrite the following values in standard notation:

a) 8.7512E3 b) -3.8122E2 c) 6.1937E-2

23 bits8 bits
1
bit

sign exponentsigni�candexponent

FIG-2.16 Storing Floating Point Values

�
The exponent is said to
have a bias of 127.

58 Hands On AppGameKit Studio Volume 1: Background Intel

Let’s see how the number 28.75 would be stored in this format:

 28.7510 = 11100.112

Normalising the binary mantissa we get:

 1.110011 E 100

The leading 1 of the significand is assumed, so only

 110011 is stored.

Adding 127 to the exponent gives

 10000011

So, when stored in the 32 bit format shown above we get

0 10000011 11001100000000000000000

There are two main situations where a floating point value is interpreted differently
by the software:

■ When the exponent is zero and the significand is zero, the value held is assumed
to be zero.

■ When the exponent has the value 111111112 (FF16) and the significand is zero,
this represents infinite. When the exponent is FF16 but the significand is not
zero, this represents an error condition and is often shown in program output
as NaN (Not a Number).

Note that when using 64 bits to store a floating point value, the leading 1 in the
significand is actually stored rather than assumed.

Character Coding
As well as numbers, computers need to store characters. Since everything within the
machine is stored in binary, this means that we need some sort of coding system to
represent characters.

The most universally used coding system in the past has been American Standard
Code for Information Interchange (ASCII — pronounced ask - ay). This uses a
single byte to store a character with codes for upper and lower case letters, punctuation
marks, numeric digits and a few other symbols.

Only 7 of the 8 bits in a byte are used for the character, the 8th bit originally being

Activity 2.16

a) Convert the value 0.00872 to binary floating point format.

b) A floating point formatted value is held within the computer as

 1 10000001 01011010000000000000000

 Calculate the decimal equivalent of this value.

Hands On AppGameKit Studio Volume 1: Background Intel 59

used as a parity bit to help with detection of errors produced during the transmission
of data.

In ASCII a capital A is coded as 01000001; a B as 01000010, etc.

The ASCII coding system is quite restrictive with no scope for representing non-
European characters.

To cope with the wider range of characters, the Unicode Standard was created
which has assigned a unique code to every possible character (over 100,000). This
coding convention is now used by all modern software.

The most widely used of the Unicode character-coding systems is UTF-8 (Unicode
Transformation Format -8 bit). This uses a variable number of bytes for coding
characters. For the original ASCII character set, UTF-8 uses a single byte, employing
exactly the same codes as ASCII. When other characters such as those from Greek,
Hebrew and Arabic are used, UTF-8 uses two bytes per character. Most other
language characters (Chinese, Japanese, etc) require three bytes of coding. More
specialised symbols (some mathematical and historic scripts) make use of a fourth
byte.

Characters can also be coded using UTF-16 (which codes in characters in either 2 or
4 bytes as required) and UTF-32 (which codes all characters using 4 bytes).

Summary
■ A modern number system’s base or radix is determined by the number of

different symbols used to represent characters.

■ A number system’s column values are the radix value raised to incrementing
powers (increments right to left).

■ Binary is a base 2 number system using the digits 0 and 1 to represent all
values.

■ An individual binary digit is known as a bit.

■ A grouping of 4 bits is known as a nybble.

■ A grouping of 8 bits (2 nybbles) is known as a byte.

■ The base of a number is often included as a subscript where confusion might
otherwise arise.

■ Integer decimal values are converted to binary by continually dividing by 2
until the quotient is zero and then writing out the remainders in reverse order.

■ An integer binary value can be converted to decimal by summing the value of
all columns containing a 1.

■ Decimal fractions are converted to binary by continually multiplying the
fractional part of each result by 2 then listing the integral parts of the results.

■ Binary fractions are converted to decimal by summing the values of all
columns containing a 1.

■ Hexadecimal is a base 16 number system using the digits 0-9,A-F.

■ A single hexadecimal digit is a convenient way of representing 4 bits.

■ Decimal can be converted to hexadecimal by continual dividing by 16 and

60 Hands On AppGameKit Studio Volume 1: Background Intel

writing out the remainder (last one first). Any remainders of 10 or more must
be converted to a hexadecimal letter.

■ A hexadecimal value can be converted to decimal by multiplying each hex
digit by the value of the column in which it is positioned and then summing
the results.

■ To convert binary to hexadecimal, split the binary value into groups of four
bits, convert the four bits to decimal then convert any values greater than 9 to a
hexadecimal letter.

■ To convert from hexadecimal to binary, convert each hexadecimal digit to
exactly 4 bits.

■ Octal is a base 8 number system using the digits 0 - 7.

■ A single octal digit is used to represent 3 binary digits.

■ Negative integer values are stored in 2s complement form.

■ A negative number’s 2’s complement form is derived by taking the binary
form of a positive number, inverting all the digits and adding 1.

■ The computer uses floating-point format to store real numbers.

■ Floating point format has three components:

 sign bit
 exponent
 significand

■ The sign bit is 0 for positive values; 1 for negative values.

■ The significand of a floating point value is always stored in its positive form
even when the value represented is negative.

■ The exponent has a bias (or offset) of 127 removing the need to store negative
values.

■ When using 32 bits to store a real value, the significand is normalised to
assume a leading 1 which is not stored.

■ When using 64 bits to store a real value, the leading 1 in the normalised
significand is stored.

■ Characters can be coded in a single byte using ASCII format.

■ The most widely used character coding system now in use is UTF-8 which
uses a variable number of bytes per character.

■ UTF-8 uses the same single-byte coding as ASCII for the ASCII character set.

Hands On AppGameKit Studio Volume 1: Background Intel 61

Support Material for this Chapter

Integer Number Converter (Numbers.exe)
Screen Shot

Overview

This AGK BASIC program allows you to convert a positive integer number from one
base to another and shows how the conversion would be achieved manually.

User Instructions

In the Numbers Panel:

Select the From number base using the top set of radiobuttons. The keyboard will
highlight only the keys appropriate to that number base

Select the To number base using the bottom set of radiobuttons.

In the Keyboard Panel:

Type in the value you want to convert. You can use the button to delete the last
digit or the Clear button to delete all digits entered.

Press the button to enter your completed value. The value you entered will
automatically be converted to the other number base and displayed in the To area.

In the Steps Panel:

Press the Show Steps button to reveal how the conversion between the selected
number bases would be performed manually.

62 Hands On AppGameKit Studio Volume 1: Background Intel

Error Messages

You’ll get an error message if you try to enter a value too large to be stored in a single
byte.

You’ll get an error message if you try to display the steps required to convert directly
from Octal to Hexadecimal (or vice versa) since there is no direct manual conversion
method. Conversion between these two bases is usually performed by converting to
binary as an intermediate step.

Download

The app file is called Numbers.exe and can be found in the AGK/Resources/Ch02/
Numbers folder of the download material for this book.

Hands On AppGameKit Studio Volume 1: Background Intel 63

Solutions
Activity 2.1

a) Working:

a) 1910 = 100112

b) 7210 = 10010002

c) 6310 = 1111112

Activity 2.2
a) Working:

a) 001010012 = 4110

b) 111111112 = 25510

c) 101010102 = 17010

Activity 2.3
The largest value that can be stored in a nibble is 11112 =
1510.

Activity 2.4
 0.3125 x 2 = 0.625
 0.625 x 2 = 1.25
 0.25 x 2 = 0.5
 0.5 x 2 = 1.0

0.312510 = .01012

Activity 2.5
0.1001012= 0.5 + 0.0625 + 0.015625 = 0.57812510

Activity 2.6
a) Working:

a) 9710 = 6116

b) 21210 = D416

c) 25510 = FF16

Activity 2.7
a) 2C16 = 4410

b) A616 = 16610

c) DE16 = 22210

Activity 2.8
a) 010001112 = 4716

b) 111111112 = FF16

c) 110010112 = CB16

Activity 2.9
a) AB16 = 101010112

b) 8C16 = 100011002

c) 9A16 = 100110102

Activity 2.10
a) 14710 = 2358

b) 758 = 6110

Activity 2.11
a) 1011102 = 568

b) 348 = 0111002

Activity 2.12
We start by converting the positive value 24810 to binary. This
gives us 111110002. Now the bits are complemented, and we
get 00000111.

Activity 2.13
 14 = 00001110

 -5 = 11111010 (1’s complement form)
 adding gives 00001000 (+8)

Activity 2.14
 14 = 00001110

 -5 = 11111011 (2’s complement form)
 adding gives 00001001 (+9)

Activity 2.15
a) 8751.2

b) -381.22

c) 0.061937

Activity 2.16
a)

0.0087210 = 0 01111000 10001110110111100101010

The significand is calculated as follows:

0.00872 x 2 = 0.01744
0.01744 x 2 = 0.03488
0.03488 x 2 = 0.06976
0.06976 x 2 = 0.13952
0.13952 x 2 = 0.27904
0.27904 x 2 = 0.55808

2 19
2 9 r 1 10011
2 4 r 1
2 2 r 0
2 1 r 0
 0 r 1

27 26 25 24 23 22 21 20

 1
 8
 32
 41

0 0 1 0 1 0 0 1

16 97
16 6 r 1
 0 r 6

64 Hands On AppGameKit Studio Volume 1: Background Intel

0.55808 x 2 = 1.11616
0.11616 x 2 = 0.23232
0.23232 x 2 = 0.46464
0.46464 x 2 = 0.92928
0.92928 x 2 = 1.85856
0.85856 x 2 = 1.71712
0.71712 x 2 = 1.43424
0.43424 x 2 = 0.86848

 etc.

Hence the significand starts .00000010001110

Normalising this, we get 1.0001110

This means the exponent is -7
Adding a bias of 127 we get an exponent of 120
12010 = 011110002

The leading 1 in the mantissa is assumed, so it is stored
beginning with the digits 0001110.

b)

1 10000001 01011010000000000000000 = 5.40625

The exponent is 129
Subtracting the 127 bias, we get an exponent of 2.

Adding the assumed 1. to the significand, we get

 1.0101101

Adjusting for the exponent, we get 101.01101

The integral part of this 101 is 5.

The fractional part is:

 0.25 + 0.125 + 0.03125

= 0.40625

Since the sign bit is zero, the number is a positive one and,
expressed in decimal, is:

 5.40625

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 65

In this Chapter:

T Understanding Compilation

T The AGK Studio Interface

T Creating a First Project

T Installing an App on a Device

T Creating Output

T Adding Comments

T Changing Output Colour, Size and Spacing

T Adjust an App Window’s Properties

T Adding a Splash Screen

Starting AGK Studio

66 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Programming a Computer

Introduction
In the last chapter we created algorithms written in a style known as structured
English. But if we want to create an algorithm that can be followed by a computer,
then we need to convert our structured English instructions into a programming
language.

There are many programming languages; C, C++, Java, C#, and Javascript being
amongst the most widely used. So how do we choose which programming language
to use? Each language has its own strengths. For example, Java allows multi-platform
programs to be created easily, while C is ideal for creating housekeeping applications.
So, when we choose a programming language, we want one that is best suited to the
task we have in mind.

We are going to use a programming language known as AGK BASIC (also called
AGK Studio Tier1). This language was designed specifically for writing computer
games which can then be used on a wide range of devices – anything from your
regular computer to a tablet or even a smartphone. Because of this, AGK BASIC has
many unique commands for displaying graphics on various screen resolutions and
for handling a wide range of input methods – anything from a standard mouse to a
touch screen or an accelerometer.

The Compilation Process
For a moment, let’s forget about AGK BASIC and consider the steps that occur when
we write a program in another language such as C++ and want to run that program
on our computer.

When we write a program in a language, the statements we use retain some English
terms and phrases. This means we can look at the set of instructions and make some
sense of what is happening after only a relatively small amount of training.

Unfortunately, the processor inside a computer only understands instructions given
as a sequence of 1’s and 0’s in a format known as machine code. The device has no
capability of directly following a set of instructions written in C++.

However, this need not be a problem; we simply need to translate the C++ statements
into machine code (just as we might have a piece of text translated from Russian to
English).

We begin the process of creating a new piece of software by mentally converting our
structured English algorithm (which we will have already created) into a sequence of
C++ statements which we enter into the computer using an Integrated Development
Environment (IDE).

The IDE acts not only as text editor allowing program statements to be typed in and
edited, but also performs all the steps required to convert the original C++ code into
a form which can be executed. The translator (known as a compiler) is part of the
IDE. After typing in our program instructions these are compiled to produce the
equivalent instructions in machine code.

The original program code is known as the source code; the machine code is known
as the object code and is saved to create an executable file.

�
A housekeeping
program is one which
performs mundane
chores such as
file copying, data
communications, etc.
and has little user
input.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 67

The object code can be executed from within the IDE or independently by loading
the executable file. The machine code instructions are then executed by the computer
and we should see the results of our logic appear on the screen (assuming there are
output statements in the program).

The compiler is a very exacting task master. The structure, or syntax, of every
statement must be exactly right. If we make the slightest mistake, even something as
simple as missing out a comma or misspelling a word, the translation process will
fail. When this happens, a window appears giving details of the error. A failure of this
type is known as a syntax error – a mistake in the grammar of our commands. Any
syntax errors have to be corrected before we can try compiling the program again.

When we are working on a project, it is best to save our work at regular intervals.
That way, if there is a power cut, we won’t have lost all our code!

When the program code is complete and the compilation process finished, the
executable file is produced. This new file (which has an .exe extension), contains a
copy of the object code. We can run the program by selecting the Run option from
within the IDE or we can load the source code from the executable file. The whole
process is summarised below.

If we want to make changes to the program, we load the source code into the editor,
make the necessary modifications, then save and recompile our program, thereby
replacing the old version of both the source and executable files.

Start
new program

Type in
program code

Compile
source code

Object
code

.exe
�le

Error
messages

Run
program

Activity 3.1

a) What type of instructions are understood by a computer?

b) What piece of software is used to translate a program from source code to
 object code?

c) Misspelling a word in your program is an example of what type of error?

68 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Things are slightly more complicated when it comes to AGK Studio BASIC.

For a start, an AGK BASIC program consists of several files and hence is referred to
as a project rather than a program, with a new folder being created automatically for
each new project.

But the real problem is that AGK Studio programs are designed to run on a variety
of devices (PC, MAC, Android tablet or phone, Apple tablet or phone, and the Ouya
games console). Unfortunately, one device may use a different machine code from
the next device. As a consequence, a binary pattern that means ‘add’ on one machine
could quite possibly mean ‘subtract’ on another.

To get round this, AGK Studio compiles our source program into something known
as bytecode. Bytecode is the machine code for a computer that doesn’t actually exist!
Our nonexistent computer is known as a virtual computer.

When we try to execute a program which has been translated into bytecode, a second
program is loaded which emulates the virtual computer. In effect, this second program
translates each bytecode statement (just before it is about to be executed) into actual
machine code for the specific device on which the bytecode is being run.

This approach (which is also used by the Java programming language) is what allows
our AGK Studio program to run on so many devices, but at the cost of taking slightly
longer to execute each statement because of the need to translate it from bytecode to
true machine code.

The process is visualised below.

Functions
A function is something we are most likely to encounter in our school mathematics
class. Perhaps the most obvious being trigonometric functions such as sine, cosine,
and tangent. How often did you have to suffer lines such as

 y = sin(45)

In the above line:

 sin is the name of the function.

 45 is the argument or parameter value being passed to the function

Next bytecode
instruction

Translate to
machine code

Execute
machine code

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 69

The function itself performs a well-defined task. In the case of the sin function, it
determines the sine of the angle given in the argument. The function “returns” the
value it calculates.

All this is even more obvious if we are using a calculator. Type in the value 45, press
the sin button and the value returned by the function, 0.707 (the sine of 45o), appears
on the screen.

Functions in Programming

Functions play a pivotal role in computer programming. All large programs are split
into a number of functions. Unlike the sin function above, a programming function
can be designed to perform whatever task the programmer requires. It may be
something as simple as clearing the computer screen or as complicated as calculating
the interest due on a loan.

In general, functions have a name; take zero, one, or more parameters; and return a
single result.

AGK Studio comes with a large set of built-in functions. Some of these perform
mathematical operations such as Sin() and Cos(), others are designed to set screen
colour, text font, manipulate sprites or handle 3D objects.

A function is “called” by specifying its name, supplying a value for the argument, and
making use of the value returned.

For example, the AGK BASIC code
y = Sin(0.7854)

calls the Sin() standard function, supplying it with the value 0.7854 (angles are
given in radians) and the value returned by the function is stored in a variable called
y.

When referring to a function in this book, you’ll usually see the function name
followed by a set of parentheses as in Sin(). The parentheses are added simply to
emphasize that the term refers to a function and not a variable name.

70 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

First Steps in AGK Studio

Introduction
The AGK Studio package is an Integrated Development Environment (IDE)
software package designed to create 2D and 3D games that can then be run on various
hardware devices.

Although AGK Studio’s interpreter allows programs to be written in either BASIC
(Tier 1) or C++ (Tier 2) only Tier 1 programs can be created from within the IDE.
When creating Tier 2 apps, other software such as Microsoft’s Visual Studio or
Android Studio must be used. This book covers only the BASIC, Tier 1, language
aspect of AGK Studio.

AGK Studio was created by Lee Bamber, CEO of The Game Creators Ltd and was
derived from his earlier creation, DarkBASIC. Continued development of AGK
Studio is under the control of Paul Johnston and Preben Eriksen.

Starting Up AGK Studio
Once we’ve installed AGK Studio, running the package will present us with the start-
up screen shown below. The dialog box’s top edit box, labelled New Location, is
where we need to enter details of the folder in which we want our AGK Studio
projects to be stored.

We’ll now have a look at the main elements of this startup screen starting with the
main menu at the top of the application’s window.

Tabbed Window containing
Media Files Page

&
Message Page

Help Window

Assets Browser
Window

Preview Window

Edit Window

Tabbed Window
containing

Project Page
&

Debug Page

Quick access
toolbar

Main menu

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 71

The Main Menu
File

As with most software, the File option allows us to create, open, save and close
projects and files as well as containing an option to close AGK Studio.

New Project When we start work on a new app we need to create a
new project. A project may consist of several files
containing program code (source files) as well as many
media files (image, sound, video, etc.).

We can have more than one project open at the same
time.

New Source File While working on a project we may want to add another
source file. This option will create a new file into which
we can enter our additional program code.

Open Project This option allows us to open an existing project to
continue working on it.

Open Source File This option opens an existing source file.

Recent Projects Lists recently opened projects (.agk files). Click on one
to re-open it.

Recent Files Lists recently opened .agc files. Click on one to re-open
it.

Export Project to Android
When our program is complete, we can ready it for
export to an Android-based device using this option.

Save Saves the current file using its existing name.

Save As Saves the current file under a new name.

Close Project This option (which is disabled until we start work on a
project) closes the current project.

Close All Projects Use this to close all projects that are currently open.

Close Source File This option closes the source file currently being
worked on.

Close All Source Files
This option closes all currently open source files.

Quit This closes AGK Studio.

�
All closing options
offer the chance to
save the projects/files
involved.

72 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Edit

As well as containing the usual text editing choices, Edit contains options to undo or
redo the last operation and a Preferences entry for setting the “look and feel” of the
interface.

Undo Undoes the last operation we performed in the IDE.

Redo Redoes the previous Undo.

Copy Copies the selected text or item.

Cut Copies and removes the selected text or item.

Delete Deletes the selected text or item.

Paste Pastes the previously copied or cut text or item to the
position of the cursor or mouse pointer.

Select All Selects all of the text in the current source file.

Preferences Many programs place the Preferences option under Edit,
but, in fact, it is used to set the default preferences we
want to use when working with AGK Studio. We’ll look
at the options available here at the end of this chapter.

Search

Options for finding and replacing existing text within our code are available from
Search as well as an option to move the edit cursor to a specific line in the code.

Find Finds the first location of specified text.

Find Next Finds the next occurrence of specified text (working
forward from current position).

Find Previous Finds the previous occurrence of specified text (working
backwards from current position).

Replace Replaces specified original text with specified new text.

Go to Line Moves the cursor to a specific line of code in the
currently selected file in the edit window.

View

Like Preferences, View modifies the “look and feel” of the interface. However,
whereas Preferences settings are retained between each use of AGK Studio, View
settings last only as long as the current session, reverting to the Preference settings
the next time AGK Studio is loaded.

We’ll look at the options given here in more detail at the end of this chapter.

Change Font This has a submenu offering various changes to the font
used when displaying the program code.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 73

Change Color Scheme
This has a submenu offering various changes to the text
and background colours.

Reset Layout It is possible to move and resize the various windows
that make up the IDE. This option returns them to their
original positions.

Hide Line Numbers
The lines of code are numbered by default. Although not
part of the actual code the line numbers are useful for
helping us to find errors reported by the compiler and
when using the Go to Line option in the Search menu.

Full Screen This expands the IDE to occupy the full screen. When in
full screen mode, this menu entry changes to Exit Full
Screen.

Windows Moving the mouse over this option allows us to control
which of the many windows of the IDE are shown/
hidden. When a window is hidden, another window will
expand into its space.

Zoom In Clicking on this option (or using the keyboard shortcut
Ctrl+) zooms in on the text in the Edit window.

Zoom Out Clicking on this option (or using the keyboard shortcut
Ctrl -) zooms out off the text in the Edit window.

Normal Size This option returns the zoom setting in the Edit window
to normal size.

Build

The main entries in the Build menu allow us to compile and run our program as well
as having it broadcast to other devices and to help with error detection using debug
mode.

Compile This option compiles the currently selected source file.
We can also use the F7 key.
If an error is detected the line is highlighted in the code
and an error message displayed in the Message page.

Run When the program compiles, we can use this option to
execute our code. When pressed before compiling, this
option will compile the code before running it. Key F5
can be used as a shortcut.

This menu option changes to Cancel Run once the
program begins execution.

FPS Run This option puts the IDE to sleep and allows the CPU
and GPU to give their full power to running the app.
This gives a better indication of how the app will run
when installed on your device.

74 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Broadcast Broadcasts the app for execution on a device currently
running AGK Player.

Debug Using the Debug option runs the program but introduces
a new set of buttons at the top of the screen to allow for
pausing and single stepping through the code.

Tools

The main purpose of the Tools menu is to test your software using the AGK Player
and set up the required details for making your software available on an Android-
based app store. There is also an option to display the number of words in the current
source code file.

Word Count Returns the number of words in the file currently being
edited. Includes comments.

<Android> Generate Keystore File
Sets up the keystore details necessary for putting an app
in Google Play or the Amazon store. The keystore
details are also used later if the app is to be updated.

<Android> View AGK Player
This allows you to search for and load the AGK Player.
The app can then be broadcast to the player for testing.

Help

The many options available under Help link to websites where we can access video
tutorials, The Game Creators' various forums and the AGK Player for Android and
iOS. The other options control what help features are shown in the extreme right
panel of AGK Studio’s IDE.

Command Help Selecting this option places the command help list in the
Help window on the right.

Help Home This option returns the contents of the right-hand Help
window to its default setting.

Video Tutorial Clicking here takes us to the web pages containing AGK
video tutorials.

AppGameKit Website
This is a link to the AGK website.

TheGameCreators Website
This is a link to the home page of The Game Creators’
website.

Community Forum
This is a link to the main forums page on The Game
Creators’ website.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 75

AppGameKit Discord Group
This is a link to the AGK discord group (discordapp.
com).

AppGameKit Player for Android
This is a link to the AGK Player on Google Play.

AppGameKit Player for iOS
This is a link to the AGK Player on Apple’s App Store.

About Creates a dialog box showing the AGK Studio
developers and the End Users Licence Agreement.

The Quick Access Toolbar
The quick access toolbar gives us fast access to some commonly used options.

 New Project. Creates a new project (same as File|New
Project).

 Open Project. Opens an existing project (same as
File|Open Project).

 Save Current File. Saves the currently active source
file (same as File|Save).

 Save All Files. Saves all currently open source files.

 Undo. Undoes the last source code edit (same as
Edit|Undo).

 Redo. Redoes the last undo (same as Edit|Redo).

 Compile. Compiles the current project (same as
Build|Compile).

 Run. Executes the current project (same as Build|Run).

 Broadcast. Broadcasts the current project. This should
be received by any device running AGK Player (same as
Build|Broadcast).

 Debug. Run the project in debug mode (same as
Build|Debug).

 Find. Finds a specified text in the current source code
file (same as Search|Find).

The Help Window
The Help window is a great feature for supplying help features within the IDE. The
window itself is resizeable, so if we need more space, we can stretch it or close other
windows temporarily to make more room.

Each option listed jumps us to a specific help feature and pressing the Home button

76 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

at the top-left brings us back to the default list.

Although we may want to look through all the options when first starting out, the
most useful ones in the long term are probably:

Vulcan and OpenGL
Gives a brief explanation of AGKStudios use of the
Vulcan and OpenGL render engines.

Principles
This section leads on to articles on some basic concepts
such as data types, variables and arrays; core statements
descriptions including output and various control
structures; explanations of built-in and user-defined
functions; and number bases.

Guides
The options here give more in-depth explanations of
program statements; handling various media; and even a
guide to Tier 2 programming with C++.

Examples
When venturing into a new topic, you may find coded
examples which help explain how to achieve the results
you are after.

Commands
The complete list of AGK Studio commands are listed
when you click here. They are split into various groups
such as 3D and 2D Physics. Clicking on an option will
eventually bring you to the description of individual
commands, the command syntax and description of the
parameters.

Image Joiner
This utility program allows several images to be joined
into a single image. A brief description is given on how
to use the program.

Development Tips
Gives useful hints and tips for creating efficient apps.

What’s New
This will keep you up-to-date with the latest fixes and
new commands.

Note that selecting Commands from the start list has exactly the same
effect as selecting Help|Command Help from the main menu.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 77

The Remaining Windows
The best way to appreciate the purpose of the remaining windows of the IDE is to
load an existing project. In the next screen shot we see how the IDE looks after
loading a project named SpotTheDifference.

In the Project page on the left we can see the project’s source code file (main.agc)
and the subfolder (media) listed below the project name.

In the Edit window main.agc’s source code is displayed.

If we click on the Project page’s media entry, the Media Files page at the bottom of
the screen will display all the files held in that subfolder.

Clicking on one of the displayed files will cause it to appear in the bottom-right
Preview window.

78 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

The Assets Browser window has an Add Folder button (which shows the three dots
of an ellipsis) in the top-right corner. We can use this to see the media contents of any
folder in our system (see below).

The Assets Browser’s Add Folder button... ...allows us to select other folders...

... which will then appear in the Assets Browser
window.

Clicking on any folder in the Assets Browser will
display the assets in that folder in the Media Files
page.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 79

Although the Media Files page doesn’t give us details of non-
image �les, if we click on one to have it appear in Preview
window, we can then play sound �les...

...or examine a 3D model.

...see the code for a source or shader �le...

When examining a 3D model, the Preview window adds controls to
allow us to zoom in or out and to rotate the object about its global
axes. We’ll discuss 3D models in Volume 2.

Most assets in the Preview window also display a
Copy button,which, when pressed, will copy the
selected �le into the current project’s media folder.

When displaying image �les, the Preview window
also shows their width and height (in pixels) as
well as the �le name.

Click to play
sound/music

Filename

Filename

Zoom
out

Width Height

Zoom
in

Magni�cation Texture Rotate

x y z

Copies �le to
current project’s

media folder

You can
also zoom using

the mouse wheel

The Media Files page
has its own set of
tabs at the end of
which is a set of four
buttons. The �rst
three are used to
adjust the size of
the images on the
Media Files page
while the �nal,
Refresh button
updates the contents
of the Media Files
page (use this when
new media �les have
been recently added).

Rather than list all media �les, a set of tags in the
Media Files page allows us to show only 3D model,
sound, shader, code, or image (texture) �les.

3D Models

Sound/Music

Shaders

80 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Starting a New Project
To start our first project, we need to follow the steps shown in the next diagram.

Activity 3.2

If you haven’t done so already, install AGK Studio. A shortcut icon should
appear on your desktop.

Familiarise yourself with the layout of AGK Studio’s IDE. In particular, try
looking at some of the downloaded media files in the Assets Browser, Media
Files page and the Preview window.

�
You may wish to use a
drive other than E:

The first step is to select File|New Project from
the main menu or to click on the equivalent
quick access button.

AGK Studio automatically creates two elements for
the new project: a subfolder called media (where
the project’s media �les must be placed) and a
source code �le called main.agc.

This creates a dialog box where we enter the
project name and the folder in which it is to be
saved. Clicking Create Project will create the
project folder and core �les.

Core contents of main.agc are also created and
displayed in the Edit window.

This default code in main.agc is a valid program.
To convert it to bytecode we can press the
Compile button, select Build|Compile or
press F7.

The program is now ready to run. This is done
by clicking on the Run button, selecting
Build|Run or pressing F5.

OR

OR OR OR OR

Use the
same name for

project and folder

Folder nameProject name

F7 F5

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 81

Notice that the Edit window supplies us with various details relating to the code (see
below).

Above these details, the Edit window has its own menu bar with the following
options:

File

Save Save the file in this tabbed edit window.

Save As Save the file under a new name.

Close Close this tabbed window.

Edit

Read-Only Mode Switches to read-only mode so that the file contents
cannot be changed.

Find Finds specified text.

Replace Replaces selected text with new text.

Toggle Line Comment
Changes the line on which the edit cursor is placed to a
comment line (by adding //~) or removes the existing
comments from the line.

Undo Undoes the last operation.

Activity 3.3

Copy the media files associated with the book to your backing store. You can
find the ZIP file containing the images, videos and sounds on the Digital Skills
website (www.digital-skills.co.uk). This book assumes you have extracted the
files to E:\AGK\Resources.

Create, compile, and run your first project (named FirstProject) exactly as
described above. Close the app window after it has run for a few seconds.

The �lename
and path

details

The number
of lines in

the program

The edit cursor’s
current position

(line/column)

Edit cursor
(enlarged)

82 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Redo Redoes the previous undone operation.

Copy Copies the selected text without changing the contents
of the file.

Cut Removes the selected text and keeps an internal copy.

Paste Pastes previously copied or cut text to the current edit
cursor position.

Select All Selects all the text in this file.

View

Hide Line Numbers
Hides/shows code’s line numbers. The command
changes to Show Line Numbers when the lines are
hidden.

Default Style Resets any changes to the edit window text colour or
background colour.

Dark Style Darkens the background and text colours when
compared to the default style.

Light Style Changes the background colour to white and modifies
some of the text colours.

The Program Code
AGK Studio gives us a helping hand by automatically generating the initial lines of
our program. The next diagram shows the code in main.agc that was automatically
generated for us.

Activity 3.4

Try out each of the View menu options.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 83

The line numbers that also appear in the Edit window are not part of the code and are
only there to help you identify the position of any line within the program.

Let’s take a look at the code that was already generated for us and see what each of
the lines means:

// Project: FirstProject
// Created: 19-03-17

 Text appearing after double forward slashes are treated
as comments by the compiler and are ignored. In fact,
the lines are there for the benefit of us humans
reminding us of the project’s name and the date on
which it was created. Notice that the date is in the
format year - month - day.

 The next line is blank. Like comments, blank lines are
ignored but are there to help with the visual appearance
of the code, separating various sections of the program.

SetErrorMode(2)
This command is a call to an AGK function which
determines what error conditions will cause AGK Studio
to stop running this program. The parameter, 2, is the
value used to terminate the program for any and all
errors.

SetWindowTitle(“FirstProject”)
SetWindowSize(1024, 768, 0)

 The first of these lines calls an AGK function which sets
the text that will appear in the window’s title area when
the program is run. Notice that text values are enclosed
in quotes. Single or double quotes are allowed.
The next line calls another function which sets the size
of that window (1024 pixels wide by 768 pixels high).
The third value in the parentheses (0), states that the app
should run in a standard window rather than in a
borderless, full screen mode.

SetWindowAllowResize(1)
This allows the user to resize the app's window.

SetVirtualResolution(1024, 768)
SetOrientationAllowed(1, 1, 1, 1)

 The first function call specifies the assumed size of the
window in pixels (width then height). This need not be
the same values as those used in the call to
SetWindowSize() but we’ll have more to say on this
topic later.
The second function call is relating to tablets and
phones and specifies that the layout produced by the
program will rotate along with the device on which it is
being displayed.

SetSyncRate(30, 0)
This command causes the screen to refresh 30 times per
second and to minimise battery use.

�
Other comments within
the code are ignored
in the description that
follows.

84 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

SetScissors(0,0,0,0)
This command ensures that output can fill the whole
screen irrespective of its width to height ratio.

UseNewDefaultFonts(1)
By default AGK uses an image-based font which can
create a poor quality text display. This command
instructs the program to use a vector-based font to
achieve a higher quality text display.

do loop These two terms mark the start and end of an infinite
loop – notice that no condition is given. Most AGK
programs contain this loop which is designed to make
sure all the code between these lines is continually
executed until the user closes the app window. Without
a loop of some type, your program would start and
finish so quickly that you would never have time to see
what was displayed in the app window.

Print(ScreenFPS())

 The Print() statement is used to display information in
the app window. The information itself is specified
within parentheses. In this case what is being displayed
is the frame rate of your hardware - this tells us how
many times per second a new image can be displayed on
the screen (Frames Per Second).

Sync() The Sync() function updates the contents of the app
window. If we make any changes to what is displayed
on the screen (for example, by executing a Print()
statement), then we need to follow this with the
statement Sync(). Without Sync() the screen display
will not be updated.

There are many hundreds of commands in AGK and unless we have an exceptional
memory we’re unlikely to remember the details of all of them. Luckily, AGK Studio
will help us out in various ways. If we move the edit cursor over a specific command
(for example, SetScissors) and press the F1 key, a detailed description of that
command will appear in the Help window (see next screen shot).

Place the edit
cursor over a
command...

...and press
 ...

...to have a
description of the
command appearF1

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 85

Running Your App on a Tablet or Smartphone
Producing a true app for a smartphone or tablet will be covered in a later chapter, but
we can, nevertheless, watch our app run on such a device before the final version is
produced.

On an Android or iOS device, we must first download the app AGK Player from the
app store used by our device. You will find AGK Player in Google Play and Apple
Store.

Before running an app on the target device, we must make sure it and our desktop are
both connected to our local WiFi network. This will allow AGK Studio running on
the desktop to broadcast the app to the target device.

Now load the source code of the app into the AGK Studio IDE on your desktop and
start the AGK Player app running on the mobile device. Next, press AGK’s Broadcast
button.

The AGK Player app will detect your program being broadcast, then download and
run it on your device. The steps involved are shown below.

Activity 3.5

In FirstProject move the cursor over various commands and press F1 to see
the help text for that command appear.

Activity 3.6

In FirstProject, modify the line containing the Print statement so that it reads

 Print(“Hello world”)

Compile and run the program. What is displayed this time?

To save your program, select File|Save from the main menu bar.

If using an Android device, go to Google Play.
On an iOS device, go to App Store.

After clicking on Install and waiting for the
download, the app should appear on your device.

Google Play

App Store

86 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

When we want to terminate our app running within AGK Player, we need to press a
finger on a position near the top of the screen for 5 seconds to return to the AGK
Player screen.

Touching the app
icon on your device
will start the player
running.
Your device will
now display the
screen shown on
the right.

With the app you’d
like to see run on
your device loaded
in AGK Studio, press
the broadcast icon
and after a few
moments the app
will execute on
your device.

Activity 3.7

Make sure you have the AGK Player app installed and running on your device.

With the latest version of FirstProject you created in Activity 3.6 showing on
the AGK Studio IDE, press the Broadcast icon. Check that the program is now
showing on your device.

Press the top of the screen for 5 seconds to exit your own app and return to
AGK Player.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 87

AGK Studio: Controls
Main Menu

File
New Project Start a new project.
New Source File Start a new source �le.
OpenProject Open existing project.
Open Source File Open existing source �le.

Recent Projects List of recent projects.
Recent Source Files List of recent �les.

Windows Show/Hide selected window.
Zoom In Zoom in on code.
Zoom Out Zoom out on code.
Normal Size Return code to default size.

Export Project to Android Export APK �le.
Save Save current project.

Edit
Undo Undo last operation.
Redo Redo last undo.
Copy Copy selected text.
Cut Cut selected text.

Delete Delete selected text.
Paste Paste copied text.
Select All Select all text
Preferences Set AGKS preferences.

Help
Command Help Shows command help groups.

About Developers and licence details.

Help Home Shows default help groups.
Video Tutorials Link to web AGK videos.
AppGameKit Website Link to AGK website.

The Game Creators Website
Link to TGC website.

Community Forum Link to AGK forum.
AppGameKit Discord Group

Link to AGK Discord group
AppGameKit Player for Android

Link to Player in Play store
AppGameKit Player for iOS

Link to Player in Apple store.

Search
Find Find speci�ed text.
Find Next Find next occurence.
Find Previous Find previous occurence.
Replace Replace text with new text.

Go to Line Move cursor to line number .

Build
Compile Convert source to bytecode.
Run Execute the program.
FPS Run Optimises execution time.

Tools
Word Count Number of words in code.
<Android> Generate Keystore File

Find AGK Player.
<Android> View AGK Player

Create keystore �le.

Broadcast Broadcast app code.

Debug Run app in debug mode.

View
Change Font Change code/IDE text size/font.
Change Color Scheme Change IDE colour scheme.
Reset Layout Rest windows layout.
Hide Line Numbers Hide/Show line numbers.

Full Screen IDE to full screen.

Save As Save current project as.
Close Project Close current project.

Close All Projects Close all projects.
Close Source File Close current �le.
Close All Source Files Close all �les.
Quit Open existing source �le.

88 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

First Statements in AGK BASIC

Introduction
Learning to program in AGK BASIC is very simple compared to other languages
such as C++ or Java. Unlike most other programming languages, it has no rigid
structure that the program itself must adhere to.

Now we need to start looking at the formal statements allowed in AGK BASIC and
see how they can be used in a program.

Adding Comments
It is important that we add comments to any programs we write. These comments
should explain the purpose of the program as a whole as well as what each section of
code is doing. It’s also good practice, when writing longer programs, to add comments
giving details such as our name, date, programming language being used, hardware
requirements of the program, and program version number. In AGK BASIC there are
five alternative ways to add comments:

Add the keyword rem. The remainder of the line becomes a comment (see FIG-3.1).

Before we continue, let’s take a moment to explain the diagram shown above. This
type of diagram is known as a syntax diagram for the obvious reason that it shows
the syntax of the statement.

Each enclosed value in the diagram is known as a token (there are two tokens in the
rem statement). When we use a rem statement in our program, its tokens must
conform to those shown in the diagram. Sometimes a token must be an exact match
for that in the diagram (here it’s rem) while others (only text in this case) have their
actual value determined by the programmer.

Fixed values are shown in rounded-corners boxes, user-defined values are shown in
regular boxes. In the case of the rem statement, the term text is used to mean any text
the programmer wishes.

Okay, let’s get back to the other types of comments we can add to a program.

Add an apostrophe character (you’ll find this on the top left key, just next to the 1 key
on a PC). Again the remainder of the line is treated as a comment (see FIG-3.2).

 Add two forward slashes to make the remainder of the line a comment (see
 FIG-3.3).

 Add several lines of comments by starting with the term remstart and
 ending with remend. Everything between these two words is treated as a
 comment (see FIG-3.4).

FIG-3.1

rem
rem text

FIG-3.2

Apostrophe Comments
text`

FIG-3.3

// Comments
text//

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 89

This last diagram introduces another symbol - a looping arrowed line. This is used to
indicate a section of the structure that may be repeated if required. In the diagram
above it is used to signify that any number of text lines can be placed between the
remstart and remend keywords. For example, we can use this statement to create the
following comment which contains three lines of text:

remstart
 This program is designed to play the game of
 battleships.
 Two peer-to-peer computers are required.
remend

The final comments option is another used to create a comments block and is an
alternative to remstart and remend (see FIG-3.5).

/*
 This program is designed to play the game of
 battleships.
 Two peer-to-peer computers are required.
*/

Print()
We’ve already come across the Print() statement in our first program, so we already
know that it is used to display information on the screen, but we need to know its
exact format so that we don’t create a syntax error by making a mistake in constructing
the statement. The format of the Print() statement is shown in FIG-3.6.

In this diagram, value means any integer, real or string value.

Using the syntax diagram as a guide, we can see that the following are valid Print()
statements:

Print(“Hello world”)
Print(‘Help!’)
Print(12)
Print(0)
Print(-34.6)

while the following are not:

 Print 36 (parentheses are missing)
 Print(Goodbye) (no quotes enclosing Goodbye)

FIG-3.4

remstart..remend
remstart

text

remend

FIG-3.5

/* */ Comment
Block

/*

text

*/

FIG-3.6

Print()
Print ()value

90 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Spaces

We can add spaces to a statement as long as those spaces do not split a single token
into separate parts. So, for example, it is quite valid to write the line

Print (123)

since each token can easily be identified, but
Pr int (12 3)

is not acceptable because the Print and 123 tokens have both been split into two
parts.

Spaces can be omitted as long as doing so does not make it impossible to tell where
one token ends and another begins. This is really only a problem when two or more
adjacent tokens are constructed entirely from letters or numbers. So if we have a
statement which begins with the code

if x = 3

then writing
ifx=3

would be invalid because the compiler would not be able to recognise the if and x
as two separate tokens. On the other hand,

Print(123)

is correct because no adjacent tokens are constructed from alphanumeric characters.

Multiple Output

When we use two or more Print() statements, each value printed will be displayed
on a separate line. For example, when the lines

Print(“Hello”)
Print(“Goodbye”)

are included in a program, they will create the output

 Hello
 Goodbye

Each message is on a separate line because the Print() statement always displays a
new line character after the value specified and this causes the screen cursor to move
to a new line.

Activity 3.8

Which of the following are NOT valid Print() statements:
 a) Print(“-9.7”) b) Print(0.0) c) Print(23, 51)

�
Alphabetic and
numeric characters are
collectively known
as alphanumeric
characters.

Activity 3.9

Modify FirstProject so lines within the do...loop are:
 Print(“First line”)
 Print(“Second line”)
 Sync()
Compile and run the program.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 91

PrintC()
The PrintC() statement is similar to Print() but does not add a new line character
to the output. This means that each PrintC() statement’s output is positioned on the
screen immediately after the previous value. Hence,

PrintC(“A”)
PrintC(“B”)

would display

 AB

Other Statements which Modify Output
Other statements allow us to make various changes as to how the information
appearing on our screen is presented. We can change the text colour, size, transparency
and even the space between the characters.

Before we get started on instructions involving colour, perhaps it might be useful to
go over a few basic facts about colour.

All colours we see on a display screen are derived from the three primary colours red,
green and blue. By varying the brightness of each of these three colours we can
achieve almost any colour or shade the eye is capable of seeing. For example, mixing
just red and green gives us yellow; blue and green gives us a colour called cyan, and
blue and red gives magenta (see FIG-3.7).

Notice that all three colours together give white. The absence of all three colours
gives black.

By varying the intensity (brightness) of each primary colour, we can create any
shades or hues we require. AGK allows the intensity to vary between 0 (no colour)
to 255 (full intensity). So pure white is achieved by setting all three colours to an
intensity value of 255. For shades of grey, all three colours must have identical
brightness values, but the lower that value, the darker the shade of grey.

Activity 3.10

In FirstProject, change the two Print() statements in your program to
PrintC() statements and observe the difference in output when the program is
run.

FIG-3.7

Primary Colours
Green

CyanYellow

White

Red BlueMagenta

92 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

SetPrintColor()

The SetPrintColor() sets the colour of all output created using the Print() and
PrintC() statements. It can also be used to set the opacity of the text.

The statement’s format is shown in FIG-3.8.

This syntax diagram introduces the use of square brackets. Tokens within square
brackets are optional and can be omitted when using the statement.

In the above diagram:

 red is an integer value giving the strength of the red component
 within the colour. This value should be in the range 0 to 255.
 0 – no red; 255 – full red. Default value: 255

 green is an integer value (0 to 255) giving the strength of the green
 component. Default value: 255

 blue is an integer value (0 to 255) giving the strength of the blue
 component. Default value: 255

 opac is an integer value (0 to 255) giving the opacity of the text.
 0 – invisible, 255 – fully opaque. Default value: 255

Text output using the default values is white, opaque.

Since the opacity value is optional and therefore can be omitted (in which case
opacity stays at its current setting), we can use the statement simply to set the colour
of any text being displayed by the Print() or PrintC() statements.

For example,
SetPrintColor(0,0,0) //*** sets text to black
SetPrintColor(255,255,255) //*** sets text to white (default)
SetPrintColor(255,0,0) //*** sets text to red

The SetPrintColor() statement must appear before the Print() or PrintC()
statements whose output you wish to affect.

The statement only takes effect after a Sync() statement is executed.

Once the colour has been set, all subsequent output will be in the specified colour.

This means that there is no real need to place the SetPrintColor() statement inside
the do...loop structure where it will be executed every time the loop is repeated.
Instead, that line of code can be moved to immediately before the do statement.
Placed here, the statement will be performed only once at the start of the program.

FIG-3.8

SetPrintColor()
SetPrintColor ()red , green , blue opac,

Activity 3.11

In FirstProject, add a SetPrintColor() statement to your program, placing it
immediately before your two PrintC() statements to create yellow text.

Compile and run the program to check that the output is correct.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 93

If there was no change to the output, what was the point of moving the statement?
The more lines of code that need to be executed, the slower a program runs. Let’s say
the statements within the loop are executed 200 times before you terminate the
program. With the SetPrintColor() inside the loop, it would have been executed
200 times; with it outside the loop it is executed only once - so the program becomes
more efficient.

If we include a value for the opac parameter when we use SetPrintColor(), we can
set the transparency of all text on the screen. The default transparency is 255, meaning
the output is fully opaque. With a value of zero, the text would be invisible.

SetPrintSize()

The SetPrintSize() statement (see FIG-3.9) sets the size of the text displayed by a
Print() or PrintC() statement.

where:

size is a real number setting the size of the characters. The
default value for characters is about 3.3%.

The reason that the text seems blurred when it is enlarged is that the text itself is
stored as an image. Enlarging that image causes blurring.

Activity 3.12

In FirstProject, reposition your SetPrintColor() statement, placing it on the
line above do.

Compile and run the program again. Does this change the text colour?

Activity 3.13

Modify the SetPrintColor() statement in FirstProject, adding 126 as the
transparency value.

Run the program and see what effect the changes have made to the output. Try
other transparency values to see their effect.

FIG-3.9

SetPrintSize()
SetPrintSize ()size

Activity 3.14

In FirstProject, add the line
 SetPrintSize(60)
immediately after your SetPrintColor() statement (reset the transparency
value to 255).

Comment out the line
 UseNewDefaultFonts(1)
then compile and run the program. What do you notice about the quality of the
text produced?

Reinstate UseNewDefaultFonts(1).

94 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

SetPrintSpacing()

This statement (see FIG-3.10) adjusts the spacing between the characters shown on
the screen.

where:

gap is a real number giving the gap between the characters.
The default is zero. Larger values widen the gap;
negative values cause the gap to decrease and even to
make letters overlap.

UseNewDefaultFonts()

The UseNewDefaultFonts() statement determines if a program is to use the old-
style, poor quality, image-based fonts when displaying text on the screen or the new-
style, high quality, vector-based fonts.

If the statement has not been included in a program, then the old-style font will be
used; if the statement is included, then the parameter value given determines which
of the two font styles is to be used.

This statement has the format shown in FIG-3.11.

where:

font is an integer value (0 or 1) specifying which font style is
to be used. (0: old-style; 1: new-style).

SetClearColor()

The window created by our AGK Studio app always has a black background. This
default colour can be changed using the SetClearColor() statement which has the
format shown in FIG-3.12.

where:

 red is an integer value (0 to 255) giving the strength of the red
 component.

FIG-3.10

SetPrintSpacing()
()gapSetPrintSpacing

Activity 3.15

Add a SetPrintSpacing() statement to FirstProject, placing it before the
do...loop structure. Set the gap size to 5.5.

Compile and run the program to check how the output is changed.

Change the value used to -3.5 and observe the effect on the output then remove
the SetPrintSpacing() command.

FIG-3.11

UseNewDefaultFonts()
()fontUseNewDefaultFonts

FIG-3.12

SetClearColor()
SetClearColor ()red green blue

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 95

 green is an integer value (0 to 255) giving the strength of the green
 component.

 blue is an integer value (0 to 255) giving the strength of the blue
 component.

ClearScreen()

The SetClearColor() statement only works when followed by a Sync() or a
ClearScreen() statement which has the same effect. The format for the ClearScreen()
statement is given in FIG-3.13.

So to create a yellow background on the screen, we would start our program with the
lines:

SetClearColor(255,255,0)
ClearScreen()

Often this statement will appear near the start of a program, but we may wish to
change the colour at a later stage perhaps to indicate that a game has entered a new
phase.

Positioning the Print()/PrintC() Statements

We have placed the various statements affecting the colour, size and spacing of our
text before the do...loop structure on the basis that these commands need only be
performed once. So we may be tempted to think that surely we can do the same thing
with the Print() and Sync() statements since the displayed text remains unchanged
throughout the running of the program. Let’s see what happens when we try this.

As we can see from the output produced, for a simple program such as this, moving
the statements has had no effect on the output produced. We are left with an empty
do...loop which makes sure that the program does not terminate before we click the
app window’s Close button.

From what was said about creating efficient code it might seem like a good idea to
move the Print() and Sync() statements outside the loop. However, the Sync()
statement does more than just update the screen display (more on this later) and with
it placed outside the main loop we may run into various problems, so make sure you
have at least one call to Sync() in the program’s do...loop structure.

FIG-3.13

ClearScreen()
ClearScreen ()

Activity 3.16

Change the background of FirstProject's window to red and test your program.

Activity 3.17

Move the PrintC() and Sync() statements in FirstProject so that they are
positioned immediately before the do statement.

What effect does this have when you run your program?

96 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

The reason our previously displayed text has now disappeared is because Print()
and PrintC() statements need to be executed before each and every call to Sync()
if we want the output text to continue to be displayed. Without this, the text will
appear only for a single frame and then vanish.

With the current version of our program our code produces the following sequence
of events:

Ready text for display in next frame (caused by the PrintC() statements)
Show next frame (caused by the Sync() statement - shows text)
Show next frame (caused by the Sync() statement - no text readied)
Show next frame (caused by the Sync() statement - no text readied)
Show next frame (caused by the Sync() statement - no text readied)
 ...

Message()

Another way of displaying text on the screen is to use the Message() statement. This
creates a more prominent output, placing the text in a separate window. The format
of the Message() statement is shown in FIG-3.14.

where:

text is a string containing the message to be displayed.

For example, the line
Message(“Hello world”)

produces the output shown in FIG-3.15 when run on a PC.

Typically, we may make use of a message window when the user has entered a wrong
value, to explain something to the user, or to warn the user that something has gone
wrong with the program.

The exact style of the window produced depends on the device on which your app is
being run.

Activity 3.18

In FirstProject, return the Sync() statement to within the do...loop structure.
How does this affect the result?

Activity 3.19

In FirstProject, return both PrintC() statements to within the do...loop
structure (before the call to Sync()). How does this affect the result?

FIG-3.14

Message()
Message ()text

FIG-3.15

A Message() Window

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 97

Summary
■ Programs are written using a programming language.

■ Programming language code must be translated into machine code before the
program can be executed by the computer.

■ The program code is known as the source code; the machine code as the object
code.

■ The object code created by the AGK compiler is a form of bytecode.

■ The saved object code is known as an executable file.

■ When an AGK program is run the bytecode is translated into the machine
code for that hardware.

■ Each line of a program must conform to the rules of syntax.

■ An error in how a line is written is known as a syntax error.

■ AGK programs can be written in BASIC or C++.

■ The collection of files created when writing an AGK app is known as a project.

■ The main file in an AGK project is main.agc which contains the program code.

■ The AGK development package is an Integrated Development Environment.
This allows edit, compiling and testing to be performed from within the same
program.

■ To download an app to your digital device, the AGK Player 2 app must be
installed and running on that device and the app broadcast from the AGK IDE.

■ When an app is being tested on a desktop, it creates an app window.

■ Comments can be added to your code using //, rem, `, remstart...remend or
/*...*/.

■ Comments help us understand the purpose of a piece of code but are ignored
by the compiler.

■ Use Print() to display information on the screen.

■ Use PrintC() to display information without moving to a new line afterwards.

■ Use SetPrintColor() to set the colour used when displaying text.

■ Use SetPrintSize() to set the size of future text output.

■ Use SetPrintSpacing() to set the spacing between characters in future text
output.

■ Use UseNewDefaultFonts() to make the program use old-style or new-style
fonts.

■ Print() and PrintC() statements should be called for each display frame in

Activity 3.20

Modify FirstProject so that it produces a message box displaying the text
"Ready to see output?" before the PrintC() statements are executed.

98 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

which the text is to appear.

■ Use SetClearColor() to set a background colour for the app screen.

■ Use ClearScreen() to clear the PC’s app window or the device’s screen.

■ Use Message() to display a message in a separate window.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 99

App Window Properties

Running Apps on a Desktop
When an app is designed to run exclusively on a desktop or laptop, then we have a
fairly simple job to do in defining the window size and position as well as the
window’s title.

SetWindowSize()

The SetWindowSize() command sets the width and height of an app’s window when
run on a desktop. The command is ignored if the app is run on a mobile device. The
format of the statement is given in FIG-3.16.

where:

width is an integer value giving the width of the window in
pixels.

height is an integer value giving the height of the window in
pixels.

opt is an integer value (0 or 1) used to create a standard
window (0) or a borderless full-screen window (1). If
option 1 is used, the width and height values are
ignored.

flag is an optional integer value (0 or 1) which allows the
width and height settings to be larger than the actual
screen size (flag = 1) or automatically reduces the width
and height settings where necessary in order to fit the
screen (flag = 0).

A typical statement would be
SetWindowSize(800,600,0)

which would create a window 800 pixels wide by 600 pixels high.

SetWindowTitle()

We can set the title that appears at the top of the window using the SetWindowTitle()
statement (see FIG-3.17).

where:

text is a string containing the text to appear in the window
title bar.

A typical statement would be:

FIG-3.16

SetWindowSize()
SetWindowSize width height flagopt

FIG-3.17

SetWindowTitle()
SetWindowTitle ()text

100 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

 SetWindowTitle(“Jigsaw Game”)

SetWindowAllowResize()

This function determines if the user is allowed to resize the app’s window. The
function has the format shown in FIG-3.18.

where:

opt is an integer value (0 or 1) which disables resizing (0) or
allows it (1).

MinimizeApp()

This function minimises the app. On a desktop, the app will minimise but continue
to execute. Under Android, the app will pause. Under iOS, the command has no
effect. The function has the format shown in FIG-3.19.

SetWindowPosition()

If we want to set the initial position of the app window when running on a desktop,
we can use SetWindowPosition() (see FIG-3.20).

where:

x,y are integer values giving the coordinates of the top-left
corner of the window’s new position.

Screen Orientation
When we create an app for a mobile device, we may expect it to be run with the
screen of the target device oriented in a specific way. If we want the longest side to
be vertical then the screen is said to be in portrait mode; with the longest side
horizontal, the screen is in landscape mode (see FIG-3.21).

Activity 3.21

Modify FirstProject so that the window’s dimensions are 1024 by 502 pixels
and contains the title “My First AGK Studio Project”. Run the program and
check that the title appears in the window.

FIG-3.18

SetWindowAllowResize()
()optSetWindowAllowResize

FIG-3.19

MinimizeApp()
()MinimizeApp

FIG-3.20

SetWindowPosition()
()SetWindowPosition x y

Activity 3.22

Modify FirstProject so that the window’s dimensions cannot be changed and
that the window is positioned at coordinates (50,10).

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 101

Of course, with mobile devices, the user may orient the screen in any one of four
ways (see FIG-3.22).

SetOrientationAllowed()

In designing an app, we can decide if the image on the screen is going to rotate when
the screen is moved from one orientation to another, or if it is going to remain
unchanged. We can even specify that it should change for some orientations and not
for others. This is achieved using the SetOrientationAllowed() function (see FIG-
3.23).

where:

port (0 or 1) 1 allows portrait orientation, 0 does not allow
this orientation.

invport (0 or 1) 1 allows inverted portrait orientation, 0 does not
allow this orientation.

landleft (0 or 1) 1 allows landscape left orientation, 0 does not
allow this orientation.

landright (0 or 1) 1 allows landscape right orientation, 0 does not
allow this orientation.

FIG-3.21

Basic Screen Orientations
Portrait Mode

Landscape Mode

FIG-3.22

Orientation Options on
Mobile Devices

Landscape Right ModeLandscape Left Mode

Portrait Mode

Portrait
Inverted
Mode

FIG-3.23 SetOrientationAllowed()

SetOrientationAllowed port invport landleft landright

102 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

If an app initially filled the portrait mode with the image shown next

and made use of the line
SetOrientationAllowed(1,1,1,1)

then it would create the screens shown below as it was rotated into the other
orientations.

On the other hand, using the line
SetOrietationAllowed(1,0,0,0)

would produce the results shown below.

If we do decide to allow the screen to change with different orientations, we may
have to modify the code executed when producing the layout in order to achieve
exactly the effects we require. Of course, if your app is designed to run on a desktop
or standard laptop, then the orientation of the app will not change.

FIG-3.24

Standard Portrait Mode

Portrait Mode

FIG-3.25

If Reorientation is Allowed
Portrait Mode

Portrait
Inverted Mode

Landscape Right Mode

Landscape Left Mode

FIG-3.26

If Reorientation is not
Allowed Portrait Mode

Portrait
Inverted Mode

Landscape Right Mode

Landscape Left Mode

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 103

Measurements
AGK Studio offers two different methods of positioning visual elements on the
screen. These are:

■ percentage resolution coordinates

■ virtual resolution coordinates

Percentage Resolution Coordinates
Using the percentage measurement system means that no matter the actual dimensions
of the app window or screen, AGK Studio always treats the width as 100% and the
height as 100% (see FIG-3.7).

When we want to position an item on the screen it is done using percentage
measurements. This means that the position (50,50) represents the middle of the app
window irrespective of the window’s actual dimensions.

The percentage system is ideal in many ways, since it allows us to worry less about

Activity 3.23

Assuming a program uses the line
 SetOrientationAllowed(1,0,1,0)
indicate which of the following images represent what would appear as the
screen is rotated.

A B
C D

E F

100%

100%

100%

100%

FIG-3.27

Percentage Coordinates

104 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

the physical resolution of the devices on which our app runs. For instance, if we give
an element of the screen a width of 50%, then we know it will take up half the width
of the screen, no matter what the actual resolution of that screen may be.

On the other hand, we have to realise that the actual size of an element may change
when shown on different devices. Let’s say a screen has a resolution of 768 pixels
wide by 1024 pixels high, then text which is defined to have a height of 2% will in
reality be about 20 pixels high, but on a screen with a resolution of 1536 by 2048, it
will be 40 pixels high.

The other important characteristic is the pixel density. That is to say, the pixels per
inch (or per centimetre). The original iPad 9.7 inch screen had a 768 by 1024 pixel
resolution, while later models with the same screen size have a resolution of 1536 by
2048. So although a text element defined to be 2% high uses 20 pixels in the earlier
models and 40 in the later models, the physical size of the text on the screen would
be the same in all models (though the text should look better on the higher resolution
screen).

Percentage values are also used when setting the size of various visual elements. For
example, earlier in this chapter we made use of the SetPrintSize() statement to
resize the text created by any subsequent Print() statement.

The value supplied to this statement represents the height of the text as a percentage
of the screen height. Of course, this means that text set to a height of 4 will appear
taller in a long window and smaller in a short window. In fact, we can see this effect
in the “Hello world” text visible in the previous diagram.

All programs in this book use this percentage system.

SetDisplayAspect()

Every program using percentage system must define its aspect ratio. That is the ratio
of the screen’s (or window’s) width to its height. This is done using the
SetDisplayAspect() function (see FIG-3.28).

where:

ratio is a floating point number giving the width to height
ratio. For example, all iPhone and iPad devices have an
aspect ratio of 4.0/3.0 (1.3333) when in landscape
mode.
A value of -1 uses the whole screen’s ratio.

Activity 3.24

Let’s suppose we are going to run our completed app on three different devices
which have the following resolutions when in portrait mode :

 a) 640×1136 b) 800×1280 c) 1536×2048

To the nearest pixel, how many pixels tall would text defined with a height of
2% be on each device?

FIG-3.28

SetDisplayAspect()
SetDisplayAspect ()ratio

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 105

Using this last option may distort visual elements of the app if the device’s aspect
ratio is different to that used when developing the app (like watching an old 4 by 3
(4/3) programme on your widescreen TV).

If this statement is omitted from a program using the percentage system, other
commands may not operate correctly.

Virtual Resolution Coordinates
To use the virtual resolution system we must start by specifying the width and height
of the app’s screen or window in pixels. However, the resolution we specify can be
different from the actual pixel resolution of the app’s screen or window.

The simplest way to understand this idea is to illustrate it with an example:

If we had written a portrait mode app for the iPhone 2, which has a screen resolution
of 320x480 pixels, we would have set the virtual resolution to 320×480 so that one
virtual pixel mapped to one actual pixel. Any visual elements would be placed using
a coordinate system that ranged from position (0,0) – top-left corner – to (319,479)
– bottom-right corner – and this would equate exactly to the screen pixels. If we ran
the same app on a later iPhone 4 with a screen resolution of 640x960, one virtual
pixel would be equivalent to two screen pixels but, within the code, position (0,0)
would still represent the top-left corner of the screen and (319,479) the bottom-right.
AGK Studio would take care of the mechanics behind mapping the virtual coordinates
used in the code to the actual coordinates needed to position things correctly on the
screen.

This is why the term virtual resolution is used; the resolution defined in the program
may be different from the actual resolution used when the app is running on a device.
When we use this system in an app, all screen positions and sizes are given in virtual
pixels.

SetVirtualResolution()

If we want to work with a resolution based on pixels rather than percentages, a
program must execute the SetVirtualResolution() function when it starts up. The
statement’s format is shown in FIG-3.29.

where:

 width is an integer value giving the nominal width of the app window
 in pixels.

 height is an integer value giving the nominal height of the app window
 in pixels.

FIG-3.29

SetVirtualResolution()
SetVirtualResolution ()width height

Activity 3.25

An app defines the screen’s virtual resolution to be 640x960. How many actual
pixels would 1 virtual pixel represent when run on a device with the following
screen resolution:

 a) 320×480 b) 640×960 c) 1280×1920

106 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

When we are developing our app on a desktop, the app window’s physical size is not
affected by the virtual resolution settings. Use SetWindowSize() to set the actual
dimensions of the window.

Handling Different Display Aspects

A problem arises when the device on which your app is running has a different aspect
ratio (width / height) than that specified in the SetVirtualResolution() statement.
Expanding the app’s resolution from 320x480 to 640x960 isn’t a problem because
both have an aspect ratio of 3/4. But if we were to try and run the same app on an
original Asus EEE Transformer which has a resolution of 800x1280 (an aspect ratio
of 5/8) then things get a bit more complicated.

Expanding the app to fill a 5/8 screen would cause distortion of any images being
displayed (circles would become ovals!). AGK Studio handles this change of aspect
ratio by creating as large a 3/4 ratio image as possible and adding a border to the
remainder of the screen (see FIG-3.30).

On the 5/8 ratio screen, the virtual position (0,0) no longer represents the physical
top-left of the screen but rather the top-left of the area being used. And if we have set
the virtual resolution to 640x960, then (639,959) is the bottom-right element of the
screen area being used.

SetBorderColor()

We can specify the border colour to be used when our app runs on a device with a
different aspect ratio to that specified in the app’s code using the SetBorderColor()
statement (see FIG-3.31).

where:

 red is an integer value (0 to 255) giving the intensity of the red
 component of the border colour to be used. 0: no red; 255: full
 red.

 green is an integer value (0 to 255) giving the intensity of the green
 component of the border colour. 0: no green; 255: full green.

FIG-3.30

Screen Borders
3 to 4 ratio screen

5 to 8 ratio screen

Border

(0,0)

(639,959)
(639,959)

(0,0)

FIG-3.31

SetBorderColor()
SetBorderColor ()red green blue

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 107

 blue is an integer value (0 to 255) giving the intensity of the blue
 component of the border colour. 0: no blue; 255: full blue.

To create a grey border we could use a statement such as:
 SetBorderColor(120,120,120)

SetScissor()

The SetScissor() command allows us to specify which area of the screen will be
drawn. The command has the format shown in FIG-3.32.

where:

x1,y1 are real values giving the top-left coordinates of the
rectangular area in which output will be drawn.

x2,y2 are real values giving the bottom-right coordinates of
the draw area.

For example, if, with a virtual resolution of 640x960 on a 3/4 aspect ratio screen, we
used the command SetScissor(320,480,639,959), only output in the bottom-left
quarter of the screen would be visible (see FIG-3.32).

However, when running on a screen with a different aspect ratio to that implied by
the program’s SetVirtualResolution() statement, we should use the line

SetScissor(0,0,0,0)

With all four parameters set to zero the program will attempt to display visual
elements that have been placed outside the specified virtual coordinates.

Say we have set the virtual resolution in our program to 640x960 (a 3 to 4 ratio) and
then run the program on a 5 to 8 ratio screen. If we try to position a visual element
outside the positions (0,0) to (639,959), that element will not appear. But if our
program includes the SetScissor(0,0,0,0) statement, then positions outside that
range of coordinates will be accepted and if they map to an area on the larger screen
they will appear (see FIG-3.34).

FIG-3.32

SetScissor()
SetScissor ()x1 y1 x2 y2

FIG-3.33

Using SetScissor()
SetScissor(320,480,639,959)

(639,959)

(320,480)

108 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Of course, only elements whose coordinates map to a position on the screen will
appear when using SetScissor(0,0,0,0). There’s no point in expecting an item
whose coordinates are set to (1000,-1000) to appear!

We’ll have more to say about this command in a later chapter, but for the moment,
we can think of it being used only in conjunction with programs that use virtual
coordinates rather than the percentage system when specifying screen positions.

Summary
■ Use SetWindowSize() to set the dimensions of the app window (or use full-

screen) when using a desktop machine.

■ Any SetWindowSize() statement is ignored when an app is run on a mobile
device.

■ Use SetWindowTitle() to set the title displayed by a windowed app on a
desktop.

■ Use SetOrientationAllowed() to set which orientations the app screen will
rotate to when run on a mobile device.

■ By default, AGK Studio uses a percentage coordinate system within the app
window.

■ Use SetVirtualResolution() to use a virtual pixel coordinate system.

■ Use SetDisplayAspect() to set the width to height ratio of the screen/window.

■ If a call to SetDisplayAspect() is omitted from a program, other commands
may not function correctly.

■ Use SetBorderColor() to specify a colour for any part of the physical screen
not included in the app’s output area.

■ Use SetWindowAllowResize() to allow/disallow window resizing.

■ Use MinimizeApp() to minimise an app.

■ Use SetWindowPosition() to set the initial position of the window when
creating a desktop app.

FIG-3.34 Using SetScissor() to Extend the Usable Screen Area

Without a SetScissor(0,0,0,0)
command, an app run on a
screen with a di�erent aspect
ratio to the one implied by the
SetVirtualResolution()
command will not display
elements positioned outside the
given coordinates.

For example, trying to position
the letter X at position (320,-5)
would show no visible results.

However, if
we add the
SetScissor()
command,
then elements
outside the
virtual coords
range can be
displayed.

Area covered by
(0,0) to (639,959)

No display
at (320,-5)

Area covered by
(0,0) to (639,959)

‘X’
at (320,-5)

X

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 109

■ Use a standard call to SetScissor() to clip any visual elements that fall
outside a given area.

■ Use SetScissor(0,0,0,0) to ensure that elements outside the normal screen
limits are drawn.

110 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Starting a New Project
Should we want to create a second project or open another, existing project, we can
do so from the main menu (File|New Project or click on the New Project icon).

Every open project appears in the Project window on the left side of the IDE. Which
of the multiple projects is currently active is shown in the combobox at the top right
of the panel (see FIG-3.35).

The Current project (active project) is the one which will execute if the run option is
selected. Unless another project has been selected, the current project will be the last
one to have been opened.

Having several projects open at the same time can be a bit confusing when we first
start using AGK Studio, so the best option is to close projects that we are not currently
working on. To do this, right-click on the project to be closed and select Close Project
from the pop-up menu (see FIG-3.36).

FIG-3.35

A Typical Project Window
Display Active

project

Press to view and
select from other

open projects

Projects
currently open

FIG-3.36

Closing a Project
Right-click to

display popup
menu

Click to close
the selected

project

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 111

AGK Studio “Look and Feel”

Introduction
The Preferences entry in the Edit menu allows us to set various options using a set of
tabbed pages

Preferences Settings
Editor

Enable Symbols Lists
When checked this will create extra drop-down lists at
the top of the Edit window. There is a separate list for
each program element including variable names used in
the program, function names, named constants and type
declarations (these are all explained in later chapters of
this book).

The drop-down lists give the identifier names used and
the line number on which it is first mentioned. For
example, below we see part of the contents of the
Variables drop-down list.

 Clicking on one of the items in a list will move the Edit
window cursor to that item in the program code.

112 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Display Line Numbers
When checked, line numbers are displayed to the left of
each line in the program code.

Enable Auto Completion
When checked, the editor will suggest possible keyword
terms after about three characters have been typed. If
desired we can move the mouse pointer over one of the
options to have the complete term added to our code. A
typical example of how this is displayed while typing is
shown below.

Tab Size By dragging the tab size slider we can modify the
number of spaces inserted when the Tab key is pressed.

Font Size By dragging the Font Size slider we can adjust the size
of the text in the Editor.

Enable Auto Indentation
When checked, the editor will automatically indent code
within a control structure. For example, any lines
between do and loop will be indented automatically.

Enable Smart Indentation
When checked, the editor will adjust the indentation to
handle complex structures where control structures are
embedded within one another.

Remove Path From Tab Names
This option removes the path information given
immediately above the edit window, leaving only the
file name.

Reset Button This rests all of the options on this page to their default
settings and closes the Preferences dialog box.

Term
being entered

Options
being o�ered

LoadIm

Activity 3.27

With FirstProject’s code in the Edit window, select Edit|Preferences>Editor and
try checking and unchecking the various options (also adjust the sliders) to see
how the screen is effected. Not all options will affect such a simple program.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 113

IDE

IDE Font Size This sets the size of all the text other than that in the
Edit window.

Enable Toolbar Large Icons
When checked, this uses larger icons in the toolbar.

Only Display Active Project Files
When checked, only source files from the current
project are displayed in the Edit window.

If unchecked, source files of any other loaded projects
are also displayed. Each source file occupies its own
tabbed page.

Display Projects Media Folder in Asset Browser
If checked, this option shows all of the loaded projects’
media folders in the Asset Browser window.

Load Classic DLC on Startup
If checked, this shows downloadable contents from
classic AGK.

Upscaling Remove Blurred Look
If checked, this adjusts the alignment of the screen
characters to increase perceived sharpness.

Larger icons (checked)

Smaller icons (unchecked)

114 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Use Internal Mouse Pointer
If checked, this option will create a mouse pointer for
devices that would not normally show one.

Toolbar Icon Set
This option allows us to to select which icons are used
in the toolbar. The options are shown below.

Media/Preview Icon Background Color
This option allows us to adjust the background colour
used with transparent parts of an image appearing in the
Media or Preview windows.

In the following example a red tint is used.

 When setting a background colour we can either drag on
the R, G and B areas to change their values or click on
the Color box to the right and select a colour. It is
important to increase the alpha (A) setting to make the
colour visible.

Current IDE FPS
This shows the screen refresh rate.

IDE Update Interval
The options here set the refresh rate used by the IDE.
Pick the one that gives the best results for your monitor.

�
The 2nd and 3rd
icon sets differ only
in the thickness of
their lines.

Default Setting

Red Tint Setting

Activity 3.28

Load the project AliceList (it’s in AGK/Resources/Ch03/AliceList). Make sure
the project’s media folder is listed in the Assets Browser and have the folder’s
contents showing in the Media window.

Select Edit|Preferences>IDE and change the background colour to a red tint.

Try adjusting the other options to see how they affect the IDE.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 115

Build Options

Windows 64-bit
When checked, the program compiles to 64-bit rather
than 32-bit.

Windows Timestamp exe for Faster ‘Run’
Normally, a program is converted to byte code and the
launch exe which runs the byte code is also updated.
When checked, this option uses the existing exe to run
the byte code and thereby reduces the delay before
execution of the app begins.

Device IP Address
Specifies the IP address of the device targeted by the
broadcast. By default any devices can receive the
broadcast.

Auto Hide Debug Window
When running in Debug mode, AGK controls the
visibility of the Debug window.

On Debug Start, Bring Debugger to Front
If checked when running in Debug mode, this brings the
Debug page to the front, positioning it “on top of” other
windows.

On Debug Try to Bring App to Front
If checked when running in Debug mode, this attempts
to ensure the app window is “on top”.

116 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Style Generator

Enable Seed Generated Style
The only option on this page, when selected, creates a
random style for the IDE, changing background and text
colours. Changing the seed value will change the
colours chosen.

Keyboard Shortcuts

This option shows the keys used for all the available keyboard shortcuts. The settings
can be changed as required.

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 117

Solutions
Activity 3.1

a) Machine code instructions. These are stored as a
 sequence of binary digits.
b) A compiler.
c) A syntax error.

Activity 3.2
No solution required.

Activity 3.3
No solution required.

Activity 3.4
No solution required.

Activity 3.5
No solution required.

Activity 3.6
Modified code for FirstProject:
// Project: FirstProject
// Created: 19-03-17

// show all errors
SetErrorMode(2)

// set window properties
SetWindowTitle(“FirstProject”)
SetWindowSize(1024, 768, 0)
SetWindowAllowResize(1) // allow the user to resize the
window
// set display properties
SetVirtualResolution(1024, 768) // doesn’t have to
match the window
SetOrientationAllowed(1, 1, 1, 1) // allow both
portrait and landscape on mobile devices
SetSyncRate(30, 0) // 30fps instead of 60 to save
battery
SetScissor(0, 0, 0, 0) // use the maximum available
screen space, no black borders
UseNewDefaultFonts(1) // since version 2.0.22 we can
use nicer default fonts
do
 Print(“Hello world”)
 Sync()

loop

Activity 3.7
If you are downloading AGK Player from Google Play:
 Run the Google Play app
 Search for AGK Player
 Install the app

Activity 3.8
a) Valid. Any characters can be enclosed in quotes -
 including numeric ones.

b) Valid. A floating-point number.

c) Invalid. Only a single value can be displayed.

Activity 3.9
Modified code for FirstProject:

// Project: FirstProject
// Created: 19-03-17

// show all errors
SetErrorMode(2)

// set window properties
SetWindowTitle(“FirstProject”)
SetWindowSize(1024, 768, 0)
SetWindowAllowResize(1) // allow the user to resize the
window
// set display properties
SetVirtualResolution(1024, 768) // doesn’t have to
match the window
SetOrientationAllowed(1, 1, 1, 1) // allow both
portrait and landscape on mobile devices
SetSyncRate(30, 0) // 30fps instead of 60 to save
battery
SetScissor(0, 0, 0, 0) // use the maximum available
screen space, no black borders
UseNewDefaultFonts(1) // since version 2.0.22 we can
use nicer default fonts
do
 Print(“First line”)
 Print(“Second line”)
 Sync()

loop

The output should be:
 First line
 Second line

Activity 3.10
Modified code for FirstProject:
// Project: FirstProject
// Created: 19-03-17

// show all errors
SetErrorMode(2)

// set window properties
SetWindowTitle(“FirstProject”)
SetWindowSize(1024, 768, 0)
SetWindowAllowResize(1) // allow the user to resize the
window
// set display properties
SetVirtualResolution(1024, 768) // doesn’t have to
match the window
SetOrientationAllowed(1, 1, 1, 1) // allow both
portrait and landscape on mobile devices
SetSyncRate(30, 0) // 30fps instead of 60 to save
battery
SetScissor(0, 0, 0, 0) // use the maximum available
screen space, no black borders
UseNewDefaultFonts(1) // since version 2.0.22 we can
use nicer default fonts
do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()

loop

The output should be:
 First lineSecond line

If you want a space between the two outputs, you would need
to include a space inside the quotes at the end of the first
piece of text or at the start of the second.

Activity 3.11
Modified code for FirstProject:

// Project: FirstProject
// Created: 19-03-17

// show all errors
SetErrorMode(2)
// set window properties
SetWindowTitle(“FirstProject”)
SetWindowSize(1024, 768, 0)
SetWindowAllowResize(1) //allow user to resize the
window
// set display properties

118 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

SetVirtualResolution(1024, 768) // doesn’t have to
match the window
SetOrientationAllowed(1, 1, 1, 1) // allow both
portrait and landscape on mobile devices
SetSyncRate(30, 0) // 30fps instead of 60 to save
battery
SetScissor(0, 0, 0, 0) // use the maximum available
screen space, no black borders
UseNewDefaultFonts(1) // since version 2.0.22 we can
use nicer default fonts
do
 //*** Use yellow text ***
 SetPrintColor(255,255,0)
 PrintC("First line")
 PrintC("Second line")
 Sync()
loop

Activity 3.12
Final section of code in FirstProject:

//*** Use yellow text ***
SetPrintColor(255,255,0)
do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
loop

The colour remains unchanged.

Activity 3.13
Final section of code in FirstProject:

//*** Use yellow, translucent text ***
SetPrintColor(255,255,0,126)
do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
loop

The text output will appear darker as the black background
shows through.

Activity 3.14
Final section of code in FirstProject:

// UseNewDefaultFonts(1)
//*** Use yellow, opaque text ***
SetPrintColor(255,255,0,255)
//*** Set text size to 60 ***
SetPrintSize(60)
do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
loop

The text will appear larger but somewhat blurred when
UseNewDefaultFonts(1) is commented out. Without this
line, AGK Studio uses the older style image-based fonts
which look pixelated when enlarged.

Activity 3.15
Final section of code in FirstProject:

UseNewDefaultFonts(1)
//*** Use yellow opaque text ***
SetPrintColor(255,255,0,255)
//***Set text size to 60 ***
SetPrintSize(60)
//*** Set character spacing to 5.5 ***
SetPrintSpacing(5.5)
do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
loop

The characters in the output text will be widely spaced.

The SetPrintSpacing() line should then be changed to
SetPrintSpacing(-3.5)

The characters will now bunch together.

Activity 3.16
Final section of code in FirstProject:

 //*** Use a red background ***
 SetClearColor(255,0,0)
 ClearScreen()
 //*** Use yellow, opaque text ***
 SetPrintColor(255,255,0,255)
 //*** Set text size to 60 ***
 SetPrintSize(60)
 do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
 loop

Activity 3.17
Final section of code in FirstProject:

//*** Set the background colour to red ***
SetClearColor(255,0,0)
ClearSCreen()
//*** Use yellow, opaque text ***
SetPrintColor(255,255,0,255)
//*** Set text size to 60 ***
SetPrintSize(60)
PrintC(“First line”)
PrintC(“Second line”)
Sync()
do
loop

The output remains unchanged.

Activity 3.18
Final section of code in FirstProject:

//*** Set the background colour to red ***
SetClearColor(255,0,0)
ClearSCreen()
//*** Use yellow, opaque text ***
SetPrintColor(255,255,0,255)
//*** Set text size to 60 ***
SetPrintSize(60)
PrintC(“First line”)
PrintC(“Second line”)
do
 Sync()
loop

The text no longer appears.

Activity 3.19
do...loop code in FirstProject:

do
 PrintC(“First line”)
 PrintC(“Second line”)
 Sync()
loop

The text is displayed.

Activity 3.20
Final section of code in FirstProject:

Message("Ready to see output?")
do
 PrintC("First line")
 PrintC("Second line")
 Sync()
loop

Hands On AppGameKit Studio Volume 1: Starting AGK Studio 119

Activity 3.21
Modified code for FirstProject:

// Project: FirstProject
// Created: 19-03-17

// show all errors
SetErrorMode(2)

// set window properties
SetWindowTitle("My First AGK Studio Project")
SetWindowSize(1024,502,0)
SetWindowAllowResize(1) // allow user to resize the
window
// set display properties
SetVirtualResolution(1024, 768) // doesn’t have to
match the window
SetOrientationAllowed(1, 1, 1, 1) // allow both
portrait and landscape on mobile devices
SetSyncRate(30, 0) // 30fps instead of 60 to save
battery
SetScissor(0, 0, 0, 0) // use the maximum available
screen space, no black borders
UseNewDefaultFonts(1) // since version 2.0.22 we can
use nicer default fonts
//*** Use a red background ***
SetClearColor(255,0,0)
ClearScreen()
//*** Use yellow opaque text ***
SetPrintColor(255,255,0,255)
//***Set text size to 60 ***
SetPrintSize(60)
Message("Ready to see output?")
do
 PrintC("First line")
 PrintC("Second line")
 Sync()
loop

Activity 3.22
Modified code for FirstProject:

// Project: FirstProject
// Created: 19-03-17

// show all errors
SetErrorMode(2)

// set window properties
SetWindowTitle("My First AGK Studio Project")
SetWindowSize(1024,502,0)
SetWindowAllowResize(0)
SetWindowPosition(50,10)
// set display properties
SetVirtualResolution(1024, 768) // doesn’t have to
match the window
SetOrientationAllowed(1, 1, 1, 1) // allow both
portrait and landscape on mobile devices
SetSyncRate(30, 0) // 30fps instead of 60 to save
battery
SetScissor(0, 0, 0, 0) // use the maximum available
screen space, no black borders
UseNewDefaultFonts(1) // since version 2.0.22 we can
use nicer default fonts
//*** Use a red background ***
SetClearColor(255,0,0)
ClearScreen()
//*** Use yellow opaque text ***
SetPrintColor(255,255,0,255)
//***Set text size to 60 ***
SetPrintSize(60)
Message("Ready to see output?")
do
 PrintC("First line")
 PrintC("Second line")
 Sync()
loop

Activity 3.23
With the orientation set to allow Portrait and Right
Landscape the screen would display:

 Portrait : A
 Inverse Portrait : B
 Right Landscape: D

 Left Landscape : F

Activity 3.24
 a) 23 pixels (2*1136/100)
 b) 26 pixels (2*1280/100)
 c) 41 pixels (2*20148/100)

Activity 3.25
 a) 0.5 pixels horizontally; 0.5 pixels vertically
 b) 1 pixel horizontally; 1 pixel vertically
 c) 2 pixels horizontally; 2 pixels vertically

Activity 3.26
The new code should appear automatically when a new
project is opened.

Activity 3.27
No solution required.

Activity 3.28
No solution required.

120 Hands On AppGameKit Studio Volume 1: Starting AGK Studio

Hands On AppGameKit Studio Volume 1: Data 123

Data

In this Chapter:

T Constants

T Variable Types

T Naming Variables

T Declaring Variables

T Named Constants

T The Assignment Statement

T Arithmetic Operators

T Operator Priority

T inc and dec Statements

T The Mod() Function

T Timer Functions

T Random Functions

T User Input

T #include and #insert

T Testing Sequential Code

124 Hands On AppGameKit Studio Volume 1: Data

Program Data

Introduction
Every computer game has to store and manipulate facts and figures (more commonly
known as data). For example, a program may store the name of a player, the number
of lives remaining or the time left in which to complete a task.

We’ve already seen that all simple data can be grouped into three basic types:

 integer - any whole number – positive, negative or zero
 real - any number containing a decimal point
 string - any collection of characters (may include
 numeric characters)

For example, if player Ian Knot had 3 lives and 10.6 minutes to complete a game,
then:

 3 is an integer value
 10.6 is a real value
 Ian Knot is a string

Constants
When a specific value appears in a computer program’s code it is usually referred to
as a constant or literal. Hence, in the statement

 Print(7)

the value 7 is a constant. When identifying a value as a constant, the constant’s type
is often included in the description, so, for example, 7 is an integer constant.

Variables
To store data in AGK BASIC we need to make use of a variable. A variable is, in
effect, reserved space within the computer’s memory where a single value can be
stored.

Every variable in a program is assigned a unique name and can store only a single
value at any moment in time.

�
The variables that hold
real values are often
referred to as float or
floating-point variables.
This reflects the storage
format used.

Activity 4.1

Identify the type of value for each of the following :

a) -9 b) abc c) 18 d) 12.8
e) ? f) 0 g) -4.0 h) Mary had
i) 4 minutes j) 0.023

Activity 4.2

What type of constants are the following:

a) -12 b) Elizabeth c) 4.14 d) 27.0

Hands On AppGameKit Studio Volume 1: Data 125

When a variable is first created, the type of value it can store (integer, real or string)
is specified implicitly or explicitly. No other type of value can be stored in that
variable. For instance, a variable designed to store an integer value cannot store a
string.

Integer Variables

In AGK BASIC, variables are created automatically as soon as we mention them in
our code. For example, let’s assume we want to store the number of lives allocated
to a game player in a variable called lives. To do this, we simply write the line:

lives = 3

This sets up a variable called lives in the computer’s memory and stores the value 3
in that variable (see FIG-4.1)

This instruction is known as an assignment statement since we are assigning a value
(3) to a variable (lives).

We are free to change the contents of a variable at any time by assigning it a different
value. For example, later in the program, we can change the contents of lives with a
line such as:

lives = 2

When we do this, any previous value stored in the variable will be removed and the
new value stored in its place (see FIG-4.2).

The variable lives is designed to store an integer value. In the lines below, a, b, c, d,
and e are also integer variables. So the following three assignments are correct

a = 200
b = 0
c = -8

but
 d = 3.14
 e = 1.9

will cause problems since they attempt to store real constants in variables designed
to hold integers.

AGK BASIC won’t actually report an error if we try out these last two examples, it
simply rounds the fractional part of the numbers and ends up storing 3 in d and 2 in
e (see FIG-4.3). Fractions of 0.5 and above are rounded up, other values are rounded
down.

FIG-4.1

Storing Data in a
Variable

3

Variable
name lives

Value
stored

FIG-4.2

Changing the Value
in a Variable 2

lives
Contents
changed

126 Hands On AppGameKit Studio Volume 1: Data

Floating-Point Variables

If we want to create a variable capable of storing a number with a decimal point, then
we must end the variable name with the hash (#) symbol. For example, if we write

d# = 3.14
e# = 1.9

we have created variables named d# and e#, both capable of storing real values (see
FIG-4.4). These are usually known as float or floating-point variables.

Any number (real or integer) can be assigned to a floating-point variable, so we could
write a statement such as:

d# = 12

Although we may assign an integer to a float variable, the value will be stored in
floating-point format. Therefore, after the statement above has been executed, d# will
contain the binary equivalent of 12.0.

If any numeric value can be stored in a float variable, why bother with integer
variables? Actually, we should always use integer values wherever possible because
some hardware can be much faster at handling integer values than float ones. Also,
floating-point numbers can be slightly inaccurate because of rounding errors within
the machine (see Chapter 2). For example, the value 2.3 might be stored as the binary
equivalent of 2.2999987. Another consideration is that a floating-point variable
usually requires more space in the computer’s memory than an integer one.

String Variables

Finally, if we want to store text, we need to use a string variable. String variable
names must end with a dollar ($) sign. The value to be stored must be enclosed in
single or double quotes. We could create a string variable named player$ and store
the name Liz Heron in it using the statement:

player$ = “Liz Heron”

The quotes are not stored in the variable (see FIG-4.5).

FIG-4.3

Integer Variables Round
Real Values

3 2
d

d = 3.14 e = 1.9
e

Rounded
up

Rounded
down

FIG-4.4

Using Float Variables 3.14 1.9
d#

d# = 3.14 e# = 1.9
e#

Complete values stored

FIG-4.5

String Variables Liz Heronplayer$ = “Liz Heron”
player$

...is
stored in the

variable

Everything
between the

quotes...

Hands On AppGameKit Studio Volume 1: Data 127

Absolutely any value can be stored in a string variable as long as that value is enclosed
in quotes. Below are a few examples:

a$ = “?>%”
b$ = “Your spaceship has been destroyed”
c$ = “That costs $12.50”
d$ = ““ //*** A string containing no characters ***

Using Meaningful Names
It is important that we use meaningful names for our variables when we write a
program. This helps us remember what a variable is being used for when we go back
and look at our code a month or two after we wrote it. So, rather than write statements
such as

a = 3
b = 120
c = 2000

a better set of assignments would be
lives = 3
points = 120
timeremaining = 2000

which give a much clearer indication of the purpose of the variables.

Naming Rules

AGK BASIC, like all other programming languages, demands that we follow a few
rules when we make up a variable name. The rules for this language are:

■ The name should start with a letter.

■ Subsequent characters in the name can be a letter, number, or underscore.

■ The final character can be a # (needed when creating float variables) or $
(needed when creating string variables).

■ Upper or lower case letters can be used, but such differences are ignored.
Hence, the terms total and TOTAL refer to the same variable.

■ The name cannot be an AGK BASIC keyword.

This means that variable names such as
a, bc, de_2, fgh$, iJKlmnp#

are valid, while names such as
2a, time-remaining

are invalid.

The most common mistake people make is to have a space in their variable names
(e.g. fuel level). This is not allowed. As a valid alternative, we can replace the space
with an underscore (fuel_level) or join the words together (fuellevel). Using capital
letters for the joined words is also popular (FuelLevel).

Note that the names no, no# and no$ represent three different variables; one designed
to hold an integer value (no), one a real value (no#) and the last a string (no$).

�
A keyword is any term
that is used as part of the
language. For example,
if, then, for, repeat, etc.

�
2a - cannot start with a
numeric digit.

�
time-remaining -
hyphens not allowed.

128 Hands On AppGameKit Studio Volume 1: Data

Declaring Variables
Many programming languages demand that we explicitly declare variables (stating
their name and the type of value they are to hold) before using them. For example, in
C++, an error would be generated if we were to write

no = 12;

before having declared no as an integer variable with the statement
int no;

Although AGK BASIC does not enforce variable declaration in the same way as
C++, it nevertheless gives us the option to declare variables with code such as

lives as integer
interest_rate as float
name as string

Note that when we use this approach we are no longer required to end real variable
names with the # symbol, nor string variables with a $ character.

#option_explicit

We can even tell the AGK BASIC compiler that all variables MUST be declared by
adding the compiler directive

#option_explicit

at the start of a program.

With this directive in place, the line
lives = 3

would be invalid without the previous declaration:
lives as integer

We can actually combine these two statements, giving the variable lives a value at the
moment it is declared:

lives as integer = 3

The format for explicitly declaring a variable is shown in FIG-4.6.

where:

name is the name being given to the variable.

type is the variable’s type. At this point, we know only of
types integer, float and string.

Activity 4.4

Which of the following are invalid variable names:

a) x b) 5 c) “total”
d) al2$ e) total score f) ts#o
g) then h) G2_F3

FIG-4.6

Declaring Variables

value=name typeas

Hands On AppGameKit Studio Volume 1: Data 129

value is the initial value to be assigned to the variable.

But why would we want to declare variables explicitly? Well, the main reason is
because of the mistakes we are going to make when writing a program! Somewhere
along the line we are going to make a mistake something like this:

A line in our program reads
no1 = 12

and many lines later we intend to change this variable’s value to 6 with the statement
nol = 6

Looks okay? It’s not! In the first instance the last character in the variable name is the
numeric digit 1 (one) but in the second line its a lowercase L.

AGK BASIC won’t object to this difference: it just assumes we are using two different
variables!

But if we had added #option_explicit to our code, and declared no1 (with a one)
as an integer variable, the compiler would have reported the fact that nol (with a
lowercase L) had not been declared, allowing us to spot our error instantly.

Named Constants
#constant

We have already seen that assigning meaningful names to the variables used in a
program aids readability. When a program uses a fixed value which has an important
role within the program (for example, perhaps the value 1000 is the score a player
must achieve to win a game), then we have the option of assigning a name to that
fixed value using the #constant statement. The format of the #constant statement
is shown in FIG-4.7.

where:

 name is the name to be assigned to the constant value. A common
 convention is to assign an uppercase name making it easy to
 distinguish between variable names and constant names.

 value is the constant value being named.

For example, the value 1000 can be named WINNINGSCORE using the line:

Activity 4.5

This Activity makes use of a tutorial app to demonstrate the concept behind
assigning values to variables and the AGK code required to perform these
assignments.

You'll find a detailed description of the app near the end of this chapter.

From the folder AGK/Resources/Ch04/VariablesTutor, run VariablesTutor.exe
and observe the code generated as you drag values into the variables' space.

FIG-4.7

#constant

#constant value[]=name

130 Hands On AppGameKit Studio Volume 1: Data

 #constant WINNINGSCORE = 1000

Since the equal sign (=) is optional, it is also valid to write:
 #constant WINNINGSCORE 1000

Real and string constants can also be named, but the names assigned must NOT end
with # or $ symbols. Therefore the following lines are valid:

 #constant PASSWORD = “neno”
 #constant PI 3.14159

The value assigned to a named constant cannot be changed, so having written

 #constant WINNINGSCORE = 1000

it is not valid to try to assign a new value later in the program with a line such as:
WINNINGSCORE = 1900

The two main reasons for using named constants in a program are:

 1) Aiding the readability of the program. For example, it is easier to
 understand the meaning of the line

 if playerscore >= WINNINGSCORE

 than
 if playerscore >= 1000

 2) If the same constant value is used in several places throughout a
 program, it is easier to change its value if it is defined as a named
 constant. For example, if, when writing a second version of a game we
 decide that the winning score has to be changed from 1000 to 2000,
 then we need only change the line

 #constant WINNINGSCORE = 1000

 to
 #constant WINNINGSCORE = 2000

 On the other hand, if we’ve used lines such as
 if playerscore >= 1000

 throughout our program, every one of those lines will have to be
 modified so that the value within them is changed from 1000 to 2000.

AGK Studio’s Variable and Constant Lists
Another advantage of declaring variables and using named constants is that AGK
Studio will automatically create one list of all declared variables and another for all
declared constants.

For example, let’s assume a program contains the following code:
#constant PI = 3.14159265
diameter as float
area as float
area = diameter * diameter * PI

then near the top of the Edit window, we will see two drop-down list options appear
: Variables and Constants. Pressing the button for each produces the results shown in
FIG-4.8.

Hands On AppGameKit Studio Volume 1: Data 131

The list shows the name of each variable and the line number where it is declared.
For the constants the value assigned is also included.

If these lists are not available at the top of the Edit window, go to the main menu’s
Edit|Preferences and in the Editor page, make sure that Enable Symbols List checkbox
is selected.

Summary
■ Fixed values are known as literals or constants.

■ There are three types of constants: integer, real and string.

■ String constants are always enclosed in single or double quotes.

■ The quotes are not part of the string constant.

■ A variable is a space within the computer’s memory where a value can be
stored.

■ Every variable must have a name.

■ A variable’s name determines which type of value it may hold.

■ Variables that end with the # symbol can hold real values.

■ Variables that end with the $ symbol can hold string values.

■ Other variables hold integer values.

■ The name given to a variable should reflect the value held in that variable.

■ When naming a variable the following rules apply:

 The name must start with a letter.
 Subsequent characters in the name can be numeric, alphabetic or the
 underscore character.
 The name may end with a # or $ symbol.
 The name must not be an AGK BASIC keyword.

■ Variables may be explicitly declared before they are used.

■ When variables are declared, float variable names need not end with a #
symbol and string variables need not end with $.

■ Use #option_explicit to make the declaration of variables compulsory.

■ Use #constant to create named constants.

■ Traditionally, named constants have names in uppercase.

■ Real and string named constants must not end with a # or $ symbol.

■ If variables are declared explicitly, they will appear in a Variables list near the
top of the Edit window.

■ All named constants appear in a Constants list near the top of the Edit window.

FIG-4.8 Variable and Constant Lists

132 Hands On AppGameKit Studio Volume 1: Data

■ Variable and Constant lists appear only if the Preferences>Editor page’s Enable
Symbols List checkbox is selected.

Hands On AppGameKit Studio Volume 1: Data 133

Allocating Values to Variables

Introduction
There are several ways to place a value in a variable. Some of the AGK BASIC
statements available to achieve this are described below.

The Assignment Statement
In the last few pages we’ve used AGK BASIC’s assignment statements to store a
value in a variable. This statement allows the programmer to place a specific value
in a variable, or to store the result of some calculation.

The assignment statement has the form shown in FIG-4.9.

where:

variable is the name of the variable being assigned a value.

value is one of the following:
 a constant
 another variable
 an arithmetic expression

Examples of each type of value are shown below.

Assigning a Constant

This is the type of assignment we’ve seen earlier, with examples such as
name$ = “Liz Heron”

where a fixed value (a constant) is copied into the variable. As a general rule, make
sure that the value being assigned is of the same data type as the variable.

Copying Another Variable’s Value

Once we’ve assigned a value to a variable in a statement such as
no1 = 12

we can then copy the contents of that variable into another variable with the command:
no2 = no1

When the assignment is complete, both variables will contain the value 12. As
before, we must make sure the two variables are of the same type, although the

FIG-4.9

The Assignment
Statement

=variable value

Activity 4.6

What are the minimum changes required to make the following statements
operate correctly?

a) desc = “tail” b) result = 12.34

134 Hands On AppGameKit Studio Volume 1: Data

contents of an integer variable may be copied to a float variable as in the line:
ans# = no1

Copying the contents of a float variable to an integer variable will cause rounding to
the nearest integer. For example,

ans# = -12.94
no1 = ans#

will store -13 in no1.

Assigning the Result of an Arithmetic Expression
Another variation for the assignment statement is to have it perform a calculation and
then store the result of that calculation in the named variable. Hence, we might write

no1 = 7 + 3

which would store the value 10 in the variable no1.

The example shows the use of the addition operator (+), but there are 5 possible
operators that may be used when performing a calculation. These are shown in FIG-
4.10.

The result of most statements should be obvious. For example, if a program begins
with the statements

no1 = 12
no2 = 3

and then contains the line
total = no1 - no2

then the variable total will contain the value 9, while the line
product = no1 * no2

Activity 4.7

Assuming a program starts with the lines:

 no1 = 23
 weight# = 125.8
 description$ = “sword”

which of the following instructions would be invalid?

a) no2 = no1 b) no3 = weight# c) result = description$
d) ans# = no1 e) abc$ = weight# f) m# = description$

FIG-4.10

Arithmetic
Operators

Operator Example
+

^

addition
subtraction
multiplication*

-

Function

power

no1 = no2 + 5
no1 = no2 - 9
ans = no1 * no2
r1# = n01/ 2.0/ division
ans = 2^3

Hands On AppGameKit Studio Volume 1: Data 135

stores the value 36 in the variable product.

The power operator (^) allows us to perform a calculation of the form xy. For
example, a 24-bit address bus on the microprocessor of our computer allows 224

memory addresses. We could calculate this number with the statement:
addresses = 2^24

Unusual Calculations

Most of the results produced by these operators are easy to calculate manually as long
as we are capable of basic arithmetic. However, when using AGK BASIC, the results
of some statements are not quite so obvious. For example, we might expect the line

ans# = 19/4

to store the value 4.75 in ans#. In fact, the value stored will be 4.0. This is because
the division operator always returns an integer result if the values involved are both
integer. On the other hand, if we write

ans# = 19/4.0

and thereby use a real value in the calculation, then the result stored in ans# will be
the expected 4.75.

When using the division operator, a situation that we must guard against is division
by zero. In mathematics, dividing any number by zero gives an undefined result, so
most programming languages get quite upset if we try to get them to perform such a
calculation. AGK BASIC will, when presented with a line such as

ans = 10/0

terminate the program and display a message such as that in FIG-4.11.

The current version of AGK Studio (19_12_17) reacts differently if a real number is
involved in the calculation. For example, executing the line

Print(10.0/0)

displays the value
-2147483648

�
Treat each statement
separately - don’t
assume the results are
cumulative.

Activity 4.8

Assuming a program starts with the lines:
 no1 = 2
 v# = 41.09
what will be the result of the following instructions?

a) no2 = no1^4 b) x# = v#*2 c) no3 = no1/5
d) no4 = no1 + 7 e) m# = no1/5 f) v2# = v# - 0.1
g) no1 = no1 + 1 h) no5 = -1 * no1

FIG-4.11

Division By Zero
Error Display

136 Hands On AppGameKit Studio Volume 1: Data

We might be tempted to think that we would never write a division-by-zero statement,
but a more likely scenario is that our program contains a line such as

ans = no1 / no2

and if no2 contains the value zero, attempting to execute the line will still cause a
problem.

Some statements may not appear to make sense if we are used to traditional algebra.
For example, what is the meaning of a line such as

no1 = no1 + 3

In fact, it means add 3 to no1. We can take the literal meaning of the statement to be:

 Take the value currently stored in no1, add 3, and store the result back in no1.

Another unusual assignment statement is of the form:
no1 = -no1

The effect of this statement is to change the sign of the value held in no1. For example,
if no1 contained the value 12, the above statement would change that value to -12.
Alternatively, if no1 started off containing the value -12, the above statement would
change no1’s contents to 12.

Operator Precedence

Of course, an arithmetic expression may have several parts to it as in the line
answer = no1 - 3 / v# * 2

and how the final result of such lines is calculated is determined by operator
precedence.

If we have a complex arithmetic expression such as
answer = 12 + 18 / 3^2 - 6

then there’s a potential problem about what should be done first when calculating the
value of the expression. Will we start by adding 12 and 18 or subtracting 6 from 2,
raising 3 to the power 2, or even dividing 18 by 3?

In fact, calculations are done in a very specific order according to a fixed set of rules.
The rules are that the power operation (^) is always done first. After that comes
multiplication and division with addition and subtraction performed last. The power
operator (^) is said to have a higher priority than multiplication and division; they
in turn having a higher priority than addition and subtraction. So, to calculate the
result of the statement above the computer begins by performing the calculation 3^2
which leaves us with:

answer = 12 + 18 / 9 - 6

Next the division operation is performed (18/9) giving the intermediate result:
answer = 12 + 2 - 6

The remaining operators, + and -, because they have the same priority, are performed
on a left-to-right basis, meaning that we next calculate 12+2 giving:

answer = 14 - 6

Finally, the last calculation (14 - 6) is performed leaving
answer = 8

Hands On AppGameKit Studio Volume 1: Data 137

and the value 8 is stored in the variable answer.

Using Parentheses

If we need to change the order in which calculations within an expression are
performed, we can use parentheses. Expressions in parentheses are always calculated
first. Therefore, if we write

answer = (12 + 18) / 9 - 6

then 12+18 will be calculated first, leaving:
answer = 30 / 9 - 6

The next calculation is 30 / 9 :
answer = 3 - 6
answer = -3

An arithmetic expression can contain many sets of parentheses. Normally, the
computer calculates the value in the parentheses by starting with the left-most set.

If sets of parentheses are placed inside one another (this is known as nested
parentheses), then the contents of the inner-most set are calculated first. Hence, in
the expression

12 / (3 * (10 - 6) + 4)

the calculations are performed as follows:

 (10 - 6) giving 12 / (3*4+4)
 3 * 4 giving 12 / (12 + 4)
 12 + 4 giving 12 / 16
 12 / 16 giving 0

The order of precedence for all arithmetic operators is shown in FIG-4.12.

Activity 4.9

What is the result of the calculation

 12 - 5 * 12 / 10 - 5 ?

�
Remember we are
dividing two integers
so we get an integer
result: 3.

Activity 4.10

Show the steps involved in calculating the result of the expression

 8 * (6-2) / (3-1)

FIG-4.12

Operator Priority

�
Operators of
equal priority are
performed on a left-
to-right basis.

Operator Priority
()

+
-

parentheses

multiplication
division
addition

/
*

Description

subtraction

1
2

3
4
4

^ power
3

138 Hands On AppGameKit Studio Volume 1: Data

The inc and dec Statements

Because adding to or subtracting from the existing value in a variable is so common,
AGK BASIC has added statements specifically to perform those tasks.

The inc statement (short for increment) allows us to add 1 or any other value to the
current contents of a variable. So rather than write

no1 = no1 + 1

we can write
inc no1

and in place of
num = num + 7

we can write
inc num, 7

Note that no value needs to be given when 1 is being added, but for any other value
the amount must be included in the statement.

When subtracting, we can use the dec statement (short for decrement) in the same
way:

dec x //*** subtract 1 from x ***
dec y, 3 //*** subtract 3 from y ***

So why offer two ways to achieve the same thing? Using inc and dec allows the
compiler to create more efficient bytecode than is possible when using the standard
assignment approach.

The format for the inc statement is shown in FIG-4.13.

where:

variable is the variable whose value is to be incremented.

value is a numeric value giving the amount to be added to the
variable. If value is omitted then 1 is added.

The format for the dec statement is given in FIG-4.14.

where:

 variable is the variable whose value is to be decremented.

Activity 4.11

Assuming a program begins with the lines no1 = 12, no2 = 3, and no3 = 5
what would be the value stored in answer as a result of the line

 answer = no1/(4 + no2 - 1)*5 - no3^2

FIG-4.13

inc inc variable , value[]

FIG-4.14

dec dec variable , value[]

Hands On AppGameKit Studio Volume 1: Data 139

 value is a numeric value giving the amount to be subtracted from the
 variable. If no number is given, then 1 is assumed.

Mod()

Many of the functions we have looked at so far require us to supply them with
information. For example, we have to supply Print() with the information we want
displayed, while SetClearColor() requires the strength of the red, green and blue
components that make up the background colour we want to use. Values supplied to
a function are known as parameters.

The Mod() function requires parameters, but it also supplies us with a result – the
integer remainder produced by an integer division. When a function supplies a result,
that value is known as a return value.

Syntax diagrams for functions that return a value have the format shown in FIG-4.15.

Notice that return type is not enclosed. That is because the return type is information
about the type of value returned by the command, but not part of how the command
is written.

When a function returns a value (as is the case with Mod()), generally we will want
to do something with that value. Perhaps the most obvious thing to do is to store the
result in a variable. Hence, we could add the line:

answer = Mod(7,3)

We could then use that value in a calculation or display it on the screen:

The Mod() function, returns the integer remainder produced after performing integer
division on two values. The function’s format is shown in FIG-4.16.

where:

v1 is an integer value giving the dividend (also called the
numerator).

v2 is an integer value giving the divisor (or denominator).

For example,
ans = Mod(9, 5)

assigns the value 4 to the variable ans since 5 divides into 9 once with a remainder
of 4. Other examples are given below:

 Mod(6, 3) returns 0
 Mod(7, 9) returns 7
 Mod(123, 10) returns 3

If the first value is negative, then any remainder is also negative:

 Mod(-11, 3) returns -2

FIG-4.15

Functions that Return
a Value

Function Name ()parametersreturn type

FIG-4.16

Mod() v1 v2(),Modinteger

140 Hands On AppGameKit Studio Volume 1: Data

Variable Range

When first learning to program, a favourite pastime of the beginner is to see how
large a number the computer can handle, so people write lines such as:

no1 = 123456789000

They are often disappointed when the program crashes at this point.

There is a limit to the value that can be stored in a variable. That limit is determined
by how much memory is allocated to a variable, and that differs from language to
language.

Integer values in AGK BASIC can be in the range -2,147,483,648 to +2,147,483,647
while floating-point values can be stored to about 7 significant figures.

String Operations

As well as being the arithmetic addition operator, the + symbol can also be used on
string values to join them together. For example, if we write

a$ = “to” + “get”

then the value toget is stored in variable a$. If we then continue with the line
b$ = a$ + “her”

b$ will contain the value together, a result obtained by joining the contents of a$ to
the string constant “her”.

The Print() Statement Again
We’ve already seen that the Print() command can be used to display values on the
screen using lines such as:

Print(1)
Print(“Hello”)

We can also get the Print() statement to display the answer to a calculation. Hence,
Print(7+3)

will display the value 10 on the screen, while the statement
Print(“Hello ” + “again”) //***Note the space after the o***

displays
 Hello again

Activity 4.12

What is the result of the following calculations:

a) Mod(12,5) b) Mod(-7,2) c) Mod(5,11) ` d) Mod(-12,-8)

�
We can only say about
since the actual value
is stored in binary, not
decimal.

Activity 4.13

What value will be stored as a result of the statement

 term$ = “abc”+”123”+”xyz”

Hands On AppGameKit Studio Volume 1: Data 141

The Print() statement can also be used to display the value held within a variable.
This means that if we follow the statement

number = 23

by the lines
Print(number)
Sync()

our program will display the value 23 on the screen, this being the value held in
number. Float and string variables can be displayed in the same way. Hence the lines

name$ = “Charlotte”
weight# = 95.3
do
 Print(name$)
 Print(weight#)
 Sync()
loop

will produce the output
 Charlotte
 95.3

If a string is placed in single quotes, the character combination \n can be used to force
the cursor on to a new line. Hence, the line

Print(‘abc\ncde’)

displays
 abc
 def

Making Use of PrintC()

Although the Print() statement cannot display more than one value at a time, by
using PrintC(), we can display two or more values on the same line of the screen.
For example, the code

capital$ = “Washington DC”
do
 PrintC(“The capital of the USA is ”)
 Print(capital$)
 Sync()
loop

produces the following output on the screen:
 The capital of the USA is Washington DC

Activity 4.14

A program contains the following lines of code:
 number = 23
 do
 Print(“number”)
 Print(number)
 Sync()
 loop

What output will be produced by the two Print() statements?

�
\n is known as an
escape character.
Escape characters are
handled differently from
standard characters.

�
The second output
statement uses Print()
in order to move the
cursor to a new line
after all output is
complete.

142 Hands On AppGameKit Studio Volume 1: Data

Another way to output a sequence of strings, this time using only a single Print()
statement, is to join those strings together so only one data value is being output:

Print(“Hello, “ + name$ + ”, how are you today?”)

Acquiring Data
Data input can come in many forms: mouse, joystick, screen press, and keyboard are
perhaps the obvious ones. AGK allows all of these methods and we’ll be looking at
each of those methods later in the book.

Another way to retrieve information is to access the built-in hardware devices such
as the timer.

AGK offers a few timer options. One gives us access to the time our program has
been running to the nearest fraction of a second. Another gives the same information
but to the nearest second. A third gives the time to the nearest one thousandth of a
second.

Timer()

The Timer() function returns the time our program has been running in seconds and
fractions of a second.

The syntax diagram for the Timer() statement is shown in FIG-4.17.

The diagram tells use that the Timer() function returns a floating-point value and that
no parameters are required by the function.

We could display a ‘live’ time by placing the statements
time# = Timer()
Print(time#)

Activity 4.15

Start a new project called Name.

Have the program set the contents of the variable name$ to Jaqueline
McKinnon and then use output statements that display the contents of name$ in
such a way that the final message on the screen becomes:

 Hello, Jaqueline McKinnon, how are you today?

Activity 4.16

Modify Name so that it uses a single Print() statement to perform all its
output.

Test and save the modified code.

FIG-4.17

Timer()

Timer ()float

Hands On AppGameKit Studio Volume 1: Data 143

in a program’s do...loop structure.

Notice that the parentheses must be included when calling the function even though
no information is placed within them.

The value returned by a statement doesn’t have to be assigned to a variable. In the
last exercise we assigned the value returned by Timer() to a variable then displayed
the contents of that variable on the screen, but we can bypass the need for the variable
by just printing the returned value directly with the line

Print(Timer())

which executes the Timer() function then displays the value returned.

Activity 4.17

Start a new project called Time. Change the code in main.agc to include:

 //*** Get time passed ***
 time_elapsed# = Timer()
 do
 //*** Display time ***
 PrintC(“Time elapsed : “)
 Print(time_elapsed#)
 Sync()
 loop

Compile and run the program.

You should see the time taken since the program started until the Timer()
command was executed. This should be much less than 1 second.

Modify your program by moving the first two lines between the do and loop
statements. Remember to change the indentation of the moved lines.

Compile and run the program. How does the output differ from the first version
of the program?

Activity 4.18

Modify Time so that the variable time_elapsed# is not required.

Test your modified program.

Activity 4.19

Since the message Time elapsed : never changes, try moving it before the do
statement, then re-run your program.

What difference does this make to what is displayed?

After performing this test, return the PrintC() statement to its original position
after the do statement.

144 Hands On AppGameKit Studio Volume 1: Data

About Sync()

Let’s take a moment out to get a deeper understanding of how Sync() works.

The contents of our screen are updated every time Sync() is executed. With Sync()
inside the do...loop structure, this means the screen is likely to be updated many
times per second. Each update redraws the entire contents of the screen. Each
redrawing is known as a frame.

To create a screen display, AGK reserves two areas of memory within our device.
These areas of memory are known as screen buffers. The contents of one buffer are
used to create the frame currently being displayed on the device’s screen. This area
is known as the front buffer. At the same time, the contents of the second buffer
(known as the back buffer) are being updated to contain the layout of the next frame.

FIG-4.18 shows how these buffers are used in the construction of a frame.

When a Print() or PrintC() statement is executed, the text to be displayed is copied
into the current back buffer.

When a Sync() statement is executed, the two areas of memory swap roles: what was
the back buffer becomes the front buffer and its contents appear on the screen; and
what was the front buffer becomes the back buffer and its contents are cleared.

It should be noted that handling the video buffers is not the Sync() statement’s only
purpose since it also updates various other aspects of an application. We will examine
these other aspects of Sync() in later chapters.

Understanding the role of the buffers will give us some insight as to how the placement

FIG-4.18 How the Screen Display is Produced

Memory

Back bu�erFront bu�er
Screen Screen

Memory

Front bu�erBack bu�er

Frame1 Frame 2

The image for
the next frame is built
up in the backbuffer

The contents
of the front buffer
creates the image

The buffers swap
roles. What was the back buffer
now becomes the front buffer

The new back
buffer is cleared

The new front
buffer creates the

screen image

Hands On AppGameKit Studio Volume 1: Data 145

of the Print() and PrintC() statements affects the display produced by the Time
project.

So, why does Time Elapsed : no longer appear when we move the Print() statement
to before the do statement? In fact, the message does appear, but it is gone so quickly
that we won’t have time to see it. After that, only the time appears.

FIG-4.19 explains the process involved when the first PrintC() statement appears
before the do.

The overall effect is that only values printed between one execution of Sync() and
the next execution of Sync() will appear on the screen. If we want text to stay on the
screen, we need to reprint it between each execution of Sync().

Timing Again

Most people are happier seeing a short period of time displayed in minutes and
seconds rather than just seconds. To achieve this we can start by rounding the time
elapsed to the nearest second using the line

total_seconds = Timer()

The number of minutes elapsed can now be calculated as total_seconds divided by
60:

minutes = total_seconds / 60

FIG-4.19

How Sync() Operates

The program starts by executing the
PrintC and Print statements. This
builds up details of what is to be
displayed in the back buffer.

Executing Sync() swaps the roles of the
two buffers, clearing the contents from
what is now the back buffer and showing
the front buffer on the screen.

When the program returns to the start of
the loop, the Print() statement causes
new details to be sent to the back buffer.

The next execution of Sync(), swaps
the buffers’ roles, outputs the new front
buffer to the screen and clears the back
buffer.

Screen

Time elapsed : 0.124513

Back bu�er Front bu�er

Data
waiting to
be output

Screen

Time elapsed : 0.124513

Front bu�er Back bu�er

Time elapsed : 0.124513

Cleared

Copied

0.126945

Screen

Time elapsed : 0.124513

Time elapsed : 0.124513

Front bu�er Back bu�er

Data
set to back

buffer

0.126945

Screen

 0.126945

Back bu�er Front bu�er
0.126945

Copied

Cleared

�
Remember, moving
a real value to an
integer variable
causes that value to be
rounded to the nearest
integer.

146 Hands On AppGameKit Studio Volume 1: Data

The remaining seconds (those not converted to minutes) give us the seconds part of
our time. This is calculated as

seconds = Mod(total_seconds, 60)

The final version of our program is shown in FIG-4.20.

ResetTimer()

Although the timer automatically starts tracking time from the moment our program
begins executing, we can reset that timer to zero using the ResetTimer() function
(see FIG-4.21).

Notice that this statement has neither parameters nor a return value. Instead it
modifies the contents of a variable maintained by AGK itself.

GetMilliSeconds()

While Timer() returns the time elapsed since the start of the program (or since the
last execution of ResetTimer()) in seconds, we can have that same value in
milliseconds by using the GetMilliSeconds() function (see FIG-4.22).

FIG-4.20

Elapsed Time in
Minutes and Seconds

// Project: Timer
// Created: 2015-01-03

// *** Set window properties ***
SetWindowTitle("Timer")
SetWindowSize(1024, 768, 0)
SetDisplayAspect(1024 / 768.0)
UseNewDefaultFonts(1)

// *** Display time elapsed in mins and secs ***
do
 //*** Get time elapsed to nearest second ***
 total_seconds = Timer()

 //*** Convert to minutes and seconds ***
 minutes = total_seconds / 60
 seconds = Mod(total_seconds, 60)

 //*** Display the result ***
 PrintC("Time elapsed : ")
 PrintC(minutes)
 PrintC(":")
 Print(seconds)
 Sync()
loop

Activity 4.20

Modify your Time program to match the code given in FIG-4.20.

Compile and test your code.

FIG-4.21

ResetTimer()

ResetTimer ()

FIG-4.22

GetMilliSeconds() GetMilliSeconds ()integer

Hands On AppGameKit Studio Volume 1: Data 147

GetSeconds()

If we are only interested in the time elapsed to the nearest second (without the
fractional part), we can use the GetSeconds() function rather than Timer().
GetSeconds() has the format shown in FIG-4.23.

Some slight inaccuracy can creep into all the timing functions after a program has
been running for some time, but if all we are interested in is time to the nearest
second, there should never be any problem.

Sleep()

It is possible to get a program to do nothing for a set period of time. As a general rule
this is undesirable in a highly animated, interactive game, but for simple games such
as those we will create in the early chapters of this book, getting a program to stop or
slow down can be of use to us. For example, it may be used to give us the time to read
a message on the screen before another call to Sync() is made.

Halting a program for a specific time is achieved using the Sleep() function (see
FIG-4.24).

where:

 millisecs is an integer value giving the time in milliseconds for which the
 program execution is to halt.

Another possible reason for using Sleep() – at least in a simple program – is to cause
the output produced by a Print() or PrintC() statement, which is not in the do...
loop structure to be displayed for sufficient time as to be visible to the user.

For example, the program in FIG-4.25 attempts to display the message
Program Starting

before going on to display the time the program has been running.

FIG-4.23

GetSeconds()

()integer GetSeconds

Activity 4.21

Modify Time to use GetSeconds() instead of Timer().

Test your new code.

FIG-4.24

Sleep() Sleep ()millisecs

Activity 4.22

Modify your Time program adding the line

 Sleep(2000) // *** halt for 2 seconds ***

immediately after the line containing Sync().

Run the program. How has the new line affected the program?

148 Hands On AppGameKit Studio Volume 1: Data

It shouldn’t come as any surprise that the message is not visible since we have a
situation similar to that we have already encountered in Activity 4.18.

However, one difference is that we have added a Sync() statement immediately after
the first Print() statement. This forces the screen to be updated (as explained earlier)
and therefore outputs the starting message. But the next Sync() statement (inside the
do...loop structure) is executed too soon to allow us to see that first message.
However, if we were to add a Sleep() statement immediately after the first Sync()
statement, the program would halt long enough for us to view the message.

Generating Random Numbers

Often in a game we need to throw dice, choose a card or think of a number. All of
these are random events. That is to say, we cannot predict what value will be thrown
on the dice, what card will be chosen, or what number some other person will think
of.

To help emulate these type of situations AGK BASIC offers several statements for

FIG-4.25

Displaying a Message
One Time Only

// Project: Message
// Created: 2015-01-05

//*** Set window properties ***
SetWindowTitle("Message")
SetWindowSize(1024, 768, 0)
SetDisplayAspect(1024 / 768.0)
UseNewDefaultFonts(1)

//*** Display start up message ***
Print("Program Starting")
Sync()

do
 //*** Display time program running ***
 PrintC("Program has been running for ")
 PrintC(GetSeconds())
 Print(" seconds")
 Sync()
loop

Activity 4.23

Create a project called Message containing the code shown in FIG-4.25.

Run the program. Does the initial message, Program Starting appear?

Activity 4.24

Modify Message by adding the line

 Sleep(2000)

immediately after the first Sync() statement.

Run the program. Is the initial message, Program Starting now visible?

Hands On AppGameKit Studio Volume 1: Data 149

the generation and manipulation of random values.

Random()

The Random() function is used to generate a random number between lower and
upper limits (see FIG-4.26).

where

 low is a non-negative integer giving the lowest value allowed.

 high is a non-negative integer giving the highest value allowed
 (maximum value allowed is 65,535).

The statement returns a random integer value in the range low to high. For example,
if we wanted to simulate the throw of a die, we could write

 dice_throw = Random(1,6)

which would store a random value between 1 and 6 in dice_throw.

Notice that the syntax diagram tells us the parameters may be omitted allowing us to
write a line such as

value = Random()

When no range of values is supplied, as in this example, the statement creates a
random number in the range 0 to 65,535.

The program in FIG-4.27 shows another use of the Random() statement to create a
random background colour for the app window.

FIG-4.26

Random()

()integer Random low high

Activity 4.25

Start a new project (Dice) and create code to perform the following logic:

 Throw a six-sided die
 Display the value thrown

Test the program by running it several times.

Save and close the project.

FIG-4.27

Random Background
Colour

// Project: Background
// Created: 2015-01-03

// *** Set window properties ***
SetWindowTitle("Background")
SetWindowSize(1024, 768, 0)
SetDisplayAspect(1024 / 768.0)
UseNewDefaultFonts(1)

//*** Cycle through random background colours ***

150 Hands On AppGameKit Studio Volume 1: Data

We have already seen that the value returned by a statement can be assigned to a
variable or displayed using a Print() statement, but we can also use the value
returned by one statement as the parameter to another directly, without using a
variable. Hence, we can replace the lines

red = Random(0,255)
green = Random(0,255)
blue = Random(0,255)
SetClearColor(red,green,blue)

with the line
 SetClearColor(Random(0,255),Random(0,255),Random(0,255))

SetRandomSeed()

Computers can’t really think of a random number all by themselves. Actually, they
cheat and use a mathematical algorithm to calculate an apparently random number.
As long as we don’t know that algorithm, we won’t be able to predict what number
the computer is going to come up with, but because the numbers generated are not
truly random, they are often referred to as pseudo random numbers.

The mathematical formula used needs to be supplied with an initial number to get
started. This is known as the seed value. This seed value determines exactly what set
of pseudo random numbers will be generated - use the same seed value on a second
occasion and exactly the same set of numbers will be generated. To prevent this
happening, the random number generator in AGK defaults to using the time from the
system clock as a seed value. This ensures that a different value is used each time a
program is run.

FIG-4.27
(continued)

Random Background
Colour

do
 //*** Generate a random value for each colour ***
 red = Random(0,255)
 green = Random(0,255)
 blue = Random(0,255)
 //*** Clear the screen using the new colour ***
 SetClearColor(red,green,blue)
 Sync()
loop

Activity 4.26

Start a new project (Background) and enter the code given in FIG-4.27. What
happens when you run the program?

Immediately after the Sync() statement, add the lines

 //*** Wait for 0.5 seconds ***
 Sleep(500)

which will get the program to pause for half a second after each screen update.
What difference does this make to the program?

Activity 4.27

Modify your Background project eliminating the need for the red, green and
blue variables. Test your program to ensure it still works correctly.

Hands On AppGameKit Studio Volume 1: Data 151

If we want to use our own seed value, we can do so using the SetRandomSeed()
statement. The most likely reason for doing this is to ensure we use the same seed
value on each run and hence the same set of random values. Normally, of course, we
wouldn’t want the same set of values, but it can be extremely useful when trying to
find mistakes in a program. The SetRandomSeed() has the syntax shown in FIG-4.28.

where:

seed is an integer value in the range {0.. 4,294,967,296 }
which is used as the start-up for the formula used in the
generation of pseudo random values.

Random2()

A second random number generator has been added to AGK BASIC. The need for a
second number generator may not be obvious but the reason is to do with a weakness
in most pseudo random number generators. If we call a generator often enough
without reseeding it, it has a tendency to eventually begin repeating a sequence of
numbers over and over again. For example, in the list of numbers below

 5, 2, 1, 4, 4, 6, 5, 3, 6, 5, 3, 6, 5, 3, 6, 5, 3

we can see that after the first few numbers, the sequence 6, 5, 3 begins to repeat itself.

Of course, a random number generator won’t start repeating until many hundreds or
thousands of numbers have been generated and the sequence is likely to contain
many more than the three values given above.

The Random2() function has the same basic format as Random()(see FIG-4.29), but
creates many more numbers before running into any danger of creating a repeating
sequence.

where

low is an integer (-2,147,483,648 to 2,147,483,647) giving
the lowest value allowed.

high is an integer (-2,147,483,648 to 2,147,483,647)giving
the highest value allowed.

When the parameters are omitted, numbers in the range -2,147,483,648 to
2,147,483,647 are generated. This is a much larger range than that produced by
Random().

SetRandomSeed2()

The Random2() statement has its own seeding function, RandomSeed2() (see FIG-
4.30).

FIG-4.28

SetRandomSeed()

()SetRandomSeed seed

FIG-4.29

Random2()

()integer Random2 low high

FIG-4.30

SetRandomSeed2()

()SetRandomSeed2 seed

152 Hands On AppGameKit Studio Volume 1: Data

where:

seed is an integer value in the range {0.. 4,294,967,296 }
which is used as the start-up for the formula used in the
generation of pseudo random values.

RandomSign()

A final statement that makes use of a random value is RandomSign() (see FIG-4.31).

where:

 value is an integer value which will be returned as either its original
 value or as a negated form of the original. In other words, if
 value was 12 then the returned value will be either 12 or -12.
 Each return option has a 50% chance of occurring.

User Input
For many games, the most important method of obtaining data is from the user. The
game player, will be controlling a game by moving a mouse or joystick, or tapping
on the screen. There is little need to type in information except perhaps a name when
a high score is achieved.

AGK has statements available for handling all of these input methods but at this stage
using these statements is a bit beyond what we have learned.

On the other hand, being able to enter simple values at a keyboard is very useful when
trying to demonstrate some of the fundamental concepts in programming.

To allow us a simple way to enter integer values, two functions are included in the
downloads for this chapter. The relevant files are in the folder AGK/Resources/Ch04/
of the ZIP file you downloaded from the Digital Skills website. The file Buttons.agc
contains two functions. These are:

SetUpButtons() This function sets up 12 circular buttons on the right of
the app window. The buttons are labelled 0 to 9,
(Backspace) and (Enter).

GetButtonEntry() This function allows us to type in an integer value using
the 12 buttons. Pressing the backspace button will
remove the last character entered. Pressing Enter
completes the data entry and returns the value entered.

Activity 4.28

Modify your Dice project so that the program starts by setting the seed value to
12.

Run the program three times and check that the same number is generated each
time.

Remove the SetRandomSeed() line after testing is complete.

FIG-4.31

RandomSign()

()integer RandomSign value

Hands On AppGameKit Studio Volume 1: Data 153

The screen displayed when the buttons are used is shown in FIG-4.32.

The buttons are placed along the right edge to make them easy to press when the app
is being used on a hand-held device. If we want to use these new functions in any of
our projects, we have to follow a few simple steps. These are shown in FIG-4.33.

FIG-4.32

Buttons Layout

Backspace
Enter

FIG-4.33

Using the Buttons

We start by creating a new project
(ButtonTest) in which to test the button
routines.

The ZIP file download for Hands On
AGKStudio Vol 1 contains a folder
called Ch04. This contains 3 files.

The PNG and TXT files are copied to the
project’s media folder. The AGC file is
copied to the project’s main folder.

In the project main.agc file, add an
instruction to the compiler to include
Buttons.agc as part of the project.

4

1 ButtonTest 2

E:\AGKStudio\Programs\ButtonTest

Select folder
(�nish with

project’s name)

3

File to be
included

#include “Buttons.agc”

154 Hands On AppGameKit Studio Volume 1: Data

The complete code (with comments) for main.agc is shown in FIG-4.34.

Notice that the window size and display aspect have been changed to create a portrait-
oriented window. This best suits the button layout.

#include

This is an instruction to the compiler to include the named source code file to a
project. Typically, the added file will contain user-created functions (as is the case
here) which have been created separately to be used in various future projects. This
idea will be covered in detail in a later chapter. The new code is inserted at the end
of the code which contains the #include statement (see FIG-4.35).

FIG-4.34

Button Input

// Project: TestButtons
// Created: 2015-01-03

//*** Other source file used by program ***
#include "Buttons.agc"

//*** Set window properties ***
SetWindowTitle("Test Buttons")
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768.0/1024)
UseNewDefaultFonts(1)

//*** Display the buttons ***
SetUpButtons()

//*** Get an integer value from the buttons ***
value_entered = GetButtonEntry()

do
 //*** Display the value entered ***
 PrintC("You entered ")
 Print(value_entered)
 Sync()
loop

FIG-4.35

The Effect of
#include

Code for TestButtons.agc
#include “Buttons.agc”

Code for TestButtons.agc

Code for Buttons.agc

Entered Code

Adjusted Code

Hands On AppGameKit Studio Volume 1: Data 155

The #include command has the format shown in FIG-4.36.

where:

filename is a string giving the name of the file to be included.
This may include path information (e.g. “E:/
MyLibrary/Maths.agc”).

#insert

Although not used here, this is an appropriate point at which to mention the #insert
command since it has a very similar purpose to #include. Like #include, the
#insert command adds the contents of a separate file to the current code. However,
in the case of #insert, the new code is inserted exactly at the position of the #insert
statement rather than at the end of the existing code (see FIG-4.37).

The #insert command has the format shown in FIG-4.38.

where:

filename is a string giving the name of the file to be included.
This may include path information.

FIG-4.36

#include

“ “#include filename

FIG-4.37

The Effect of
#insert

Code for TestButtons.agc
#insert “Buttons.agc”

Code for TestButtons.agc

Code for Buttons.agc

Entered Code

Adjusted Code

FIG-4.38

#insert “ “#insert filename

Activity 4.29

Start a new project called TestButtons.

From the downloaded material in the AGK/Resources/Ch04 folder, copy
Buttons.png and Buttons subtext.txt into the TestButtons project’s media folder.

156 Hands On AppGameKit Studio Volume 1: Data

We will be making use of the button input code in a few programs. The process for
using the code is always the same:

	 Copy	the	three	files	to	the	project’s	folders
 Add a #include statement to the start of main.agc
 Set the main window to be in portrait mode
 Call the functions as required by the program logic

Summary
■ The assignment statement takes the form

 variable = value

 where value can be a constant, other variable, or an expression.

■ The value assigned should be of the same type as the receiving variable.

■ Arithmetic expressions can use the following operators:
 ^ * / + -

■ Division involving two integer values always returns an integer result.

■ Division involving at least one real value returns a real result.

Activity 4.29 (continued)

From the Ch04 folder copy Buttons.agc into the project’s main folder.

Modify the contents of the project’s main.agc so that the code matches that
given in FIG-4.34.

Compile and run the program checking that you can enter and delete characters
using the buttons.

Check that the number displayed when you press the Enter key matches the
value you typed in.

Activity 4.30

Start a new project called Guess. Copy the necessary files to the appropriate
project folders to allow you to use button input in the program.

Modify the logic of main.agc to match the following structured English
description:

 Set window title to Guess
 Set the window size to 768 x 1024
 Clear the screen
 Display the set of input buttons
 Set number to a random value between 0 and 9
 Display “Guess what my number is”
 Read a value for guess from the buttons
 Display “My number was “ and the value of number
 Display “Your guess was “ and the value of guess

Compile and check your program by running it three times.

Hands On AppGameKit Studio Volume 1: Data 157

■ Division by zero is an error.

■ Calculations are performed on the basis of highest priority operator first and a
left-to-right basis.

■ The power operator has the highest priority; multiplication and division the
next highest, followed by addition and subtraction.

■ Terms enclosed in parentheses are always performed first.

■ The + operator can be used to join strings.

■ The inc operator adds a specified value to a variable.

■ The dec operator subtracts a specified amount from a variable.

■ The Mod() function returns the integer remainder produced after performing an
integer division.

■ Use Timer() to discover the time a program has been running. The result is in
seconds and fractions of a second.

■ Use GetSeconds() to discover the time a program has been running to the
nearest whole second.

■ Use GetMilliSeconds() to discover how long a program has been running in
milliseconds.

■ Use Sleep() to have a program stop for a given number of milliseconds.

■ AGK uses a pseudo random number algorithm to create apparently random
numbers within a specified range.

■ The values generated are determined by an initial seed value.

■ The default seed value for the algorithm is taken from the system’s clock.

■ Use SetRandomSeed() to set the seed value for the random number generator
to a specified value.

■ Use Random() to generate a random number. A range may be specified.

■ If a great many random numbers are to be generated it is possible that the
algorithm may cycle repeatedly through a set sequence of values.

■ Use Random2() to reduce the chances of a repeated sequence of values or to
increase the range of possible values.

■ Use SetRandomSeed2() to specify a seed value for Random2().

■ Use RandomSign() to assign a random sign (- or +) to a specified numeric
value.

■ The Sync() function makes use of two screen buffers.

■ The front buffer contains the data of the current screen output.

■ The back buffer contains the data for the next screen output.

■ Calling Sync() causes the two screen buffers to swap functions and clears the
newly designated back buffer.

■ Use #include to include the contents of another source code file at the end of
the current file.

158 Hands On AppGameKit Studio Volume 1: Data

■ Use #insert to include the contents of another source code file at a specific
point in the current file.

Hands On AppGameKit Studio Volume 1: Data 159

Testing Sequential Code
Every program we write needs to be tested. For a simple sequential program (such as
those we have created so far) which accepts user input and produces an output,
testing requires us to think of a value to be entered, predict what result this value
should produce, and then run the program to check that we do indeed obtain the
expected result from that test data.

The program below (see FIG-4.40) reads in a value from the buttons and displays the
square root of that value.

FIG-4.40

Calculating the
Square Root

// Project: SquareRoot
// Created: 2015-01-05
#include "Buttons.agc"

//*** Set window properties ***
SetWindowTitle("SquareRoot")
SetWindowSize(768, 1024, 0)
//*** Set display properties ***
SetDisplayAspect(768.0/1024)
UseNewDefaultFonts(1)
SetOrientationAllowed(1, 1, 1, 1)

//*** Clear the screen ***
ClearScreen()

//*** Display buttons ***
SetUpButtons()

//*** Display prompt ***
Print("Enter a number : ")
Sync()
Sleep(2000)

//*** Get value ***
no = GetButtonEntry()

//*** Calculate square root ***
sqroot# = no^0.5

do
 rem *** Display result ***
 PrintC("Square root of ")
 PrintC(no)
 PrintC(" is ")
 Print(sqroot#)
 Sync()
loop

Activity 4.31

Start a new project called SquareRoot and compile the default code.

Copy Buttons.agc into the project's main folder. Copy Buttons subimages.
txt and Buttons.png into the media folder. Recode main.agc to match the code
given in FIG-4.40.

Compile the program but do not run it.

160 Hands On AppGameKit Studio Volume 1: Data

To test this program we might decide to enter the value 16 with the expectation of the
displayed result being 4.

Perhaps that one test would seem sufficient to say that the program is functioning
correctly. However, a more cautious person might try a few more values just to make
sure. But what values should be chosen? Should we try 25 or 9, 3 or 7?

As a general rule it is best to think carefully about what values we choose as test data.
A few carefully chosen values may show up problems when many more randomly
chosen values show nothing.

When the test data involves numeric values only, perhaps the most obvious categories
are positive numbers, negative numbers, and zero (which is neither negative or
positive).

We have already tried a positive number (16), so perhaps we should try -9, say, and,
of course, zero.

But in each case it is important that we work out the expected result before entering
our test data into the program – otherwise we have no way of knowing if the results
we are seeing on the screen are correct.

As we can see from the result of Activity 4.32, it is not always easy or even possible
to test our code with the values we might wish. More on this in a later chapter.

When a program requires a string value to be entered by the user, perhaps the test data
could be:

 a string with zero characters (just press the Enter when asked for data)
 a string with only a single character
 a string containing multiple characters

Of course, these suggestions for creating test data will almost certainly need to be
modified depending on the nature of the program we are testing.

Activity 4.32

Test SquareRoot using the value 16.

Did you achieve the expected result?

Activity 4.33

What results would you expect from SquareRoot if your test data was 0
and -9?

Attempt to run the program with these test values and check that the expected
results are produced.

Hands On AppGameKit Studio Volume 1: Data 161

Support Material for this Chapter

Variables Tutor (VariablesTutor.exe)
Screen Shot

Overview

This program allows you to drag values from the bottom right into the variable
rectangles above. When a valid value is dragged into a box, the corresponding AGK
code is displayed in the left panel.

Selecting the checkbox labelled Explicit declaration causes the variables used to be
explicitly declared allowing the string variable name to drop the $ character ending
and the real (float) variable to drop the # character.

Dragging a new, valid value to a box adjusts the code. Attempting to drag an invalid
value to a variable space has no effect.

Download

The app file is called VariablesTutor.exe and can be found in the AGK/Resources/
Ch04/VariablesTutor folder of the download material for this book.

162 Hands On AppGameKit Studio Volume 1: Data

Solutions
Activity 4.1

a) Integer b) String c) Integer d) Float
e) String f) Integer g) Float h) String
i) String j) Float

Activity 4.2
a) -12 integer constant
b) Elizabeth string constant
c) 4.14 float constant
d) 27.0 float constant

Activity 4.3
a) Valid.
b) Invalid. Stores 13 since b is an integer variable.
c) Invalid. Not a string variable
d) Invalid. Remove $ from variable name or put
 quotes round the 5.
e) Valid. Single or double quotes are accepted.
f) Valid.

Activity 4.4
a) Valid.
b) Invalid. Must start with a letter.
c) Invalid. Names cannot be within quotes.
d) Valid.
e) Invalid. Spaces are not allowed in a name.
f) Invalid. # must appear at the end of the name.
g) Invalid. then is a BASIC keyword.
h) Valid.

Activity 4.5
No solution required.

Activity 4.6
a) desc$=”tall”
b) result#= 12.34

Activity 4.7
a) Valid.
b) Valid. but fraction part rounded and integer stored.
c) Invalid. A string cannot be copied to an integer
 variable.
d) Valid. The integer value in no1 will be copied to ans#
 where it will be stored in floating-point format.
e) Invalid. A float cannot be copied to a string variable
f) Invalid. A string cannot be copied to a float variable

Activity 4.8
a) no2 is 16
b) x# is 82.18
c) no3 is zero (integer division)
d) no4 is 9
e) m# is 0.0
f) v2# is 40.99
g) no1 is 3
h) no5 is -2

Activity 4.9
The result is 1
The expression is calculated as follows:
 12 - 5 * 12 / 10 - 5
 12 - 60 / 10 - 5
 12 - 6 - 5
 6 - 5
 1

Activity 4.10
Steps:
 8 * (6 - 2) / (3 - 1)
 8 * 4 / (3 - 1)
 8 * 4 / 2
 32 / 2
 16

Activity 4.11
answer = no1 / (4 + no2 - 1) * 5 - no3 ^ 2
answer = 12 / (4 + 3 - 1) * 5 - 5 ^ 2
answer = 12 / (7 - 1) * 5 - 5 ^ 2
answer = 12 / 6 * 5 - 5 ^ 2
answer = 12 / 6 * 5 - 25
answer = 2 * 5 - 25
answer = 10 - 25
answer = -15

Activity 4.12
a) 2
b) -1
c) 5
d) -4

Activity 4.13
term$ will hold the string abcl23xyz

Activity 4.14
Output:
 number
 23

Activity 4.15
Code for Name:

name$ = “Jaqueline McKinnon”
do
 PrintC(“Hello, “)
 PrintC(name$)
 Print(“, how are you today?”)
 Sync()
loop

Note the spaces inside the quotes to make sure there are gaps
either side of the name.

Activity 4.16
Modified code for Name:

name$ = “Jaqueline McKinnon”
do
 Print(“Hello, “+name$+”, how are you today?”)
 Sync()
loop

Hands On AppGameKit Studio Volume 1: Data 163

Activity 4.17
Modified code for Time:

do
 //*** Get time passed ***
 time_elapsed# = Timer()
 //*** Display time ***
 PrintC(“Time elapsed : “)
 Print(time_elapsed#)
 Sync()
loop

The time displayed on the screen now updates continuously.

Activity 4.18
Modified code for Time:

do
 //*** Display time passed ***
 PrintC(“Time elapsed : “)
 Print(Timer())
 Sync()
loop

Activity 4.19
Modified code for Time:

PrintC(“Time elapsed : “)
do
 rem *** Display time passed ***
 Print(Timer())
 Sync()
loop

Each time the Sync() statement is executed, only the contents
of Print() or PrintC() statements executed since the
previous execution of Sync() are displayed.

Since the PrintC() statement above is executed only once, its
message disappears the second time the Sync() statement is
executed.

Activity 4.20
No solution required.

Activity 4.21
Modified code for Time (the modified section is highlighted):

// Project: Timer
// Created: 2015-01-03

//*** Set window properties ***
SetWindowTitle(“Timer”)
SetWindowSize(1024, 768, 0)
SetDisplayAspect(1024 / 768.0)
UseNewDefaultFonts(1)

//*** Display time elapsed in mins and secs ***
do
 //*** Get time elapsed to nearest second ***
 total_seconds = GetSeconds()

 //*** Convert to minutes and seconds ***
 minutes = total_seconds / 60
 seconds = Mod(total_seconds, 60)

 //*** Display the result ***
 PrintC(“Time elapsed : “)
 PrintC(minutes)
 PrintC(“:”)
 Print(seconds)
 Sync()
loop

Activity 4.22
Modified code for Time:

// Project: Timer
// Created: 2015-01-03

//*** Set window properties ***
SetWindowTitle(“Timer”)
SetWindowSize(1024, 768, 0)
SetDisplayAspect(1024 / 768.0)
UseNewDefaultFonts(1)

//*** Display time elapsed in mins and secs ***
do
 //*** Halt for 2 seconds ***
 Sleep(2000)
 //*** Get time elapsed to nearest second ***
 total_seconds = GetSeconds()

 //*** Convert to minutes and seconds ***
 minutes = total_seconds / 60
 seconds = Mod(total_seconds, 60)

 //*** Display the result ***
 PrintC(“Time elapsed : “)
 PrintC(minutes)
 PrintC(“:”)
 Print(seconds)
 Sync()
loop

The change means that the screen is only updated every 2
seconds so we see the time pass in 2 second steps.

Activity 4.23
The message is not visible.

Activity 4.24
Modified code for Message:

// Project: Message
// Created: 2015-01-05

//*** Set window properties ***
SetWindowTitle(“Message”)
SetWindowSize(1024, 768, 0)
SetDisplayAspect(1024 / 768.0)
UseNewDefaultFonts(1)

//*** Display start up message ***
Print(“Program Starting”)
Sync()
Sleep(2000)

do
 //*** Display time program running ***
 PrintC(“Program has been running for “)
 PrintC(GetSeconds())
 Print(“ seconds”)
 Sync()
loop

The initial message now appears for two seconds before
disappearing.

Activity 4.25
Code for Dice:

// Project: Dice
// Created: 2015-01-03

//*** Set window properties ***
SetWindowTitle(“Dice”)
SetWindowSize(1024, 768, 0)
SetDisplayAspect(1024 / 768.0)
UseNewDefaultFonts(1)

//*** Throw dice ***
dice = Random(1,6)
do
 //*** Display value thrown ***
 PrintC(“Value thrown was : “)
 Print(dice)
 Sync()
loop

164 Hands On AppGameKit Studio Volume 1: Data

Activity 4.26
The colours change so quickly that there may not be enough
time to update the whole background before the colour
changes again. This will cause bands of colour to appear.

Modified code for Background:
// Project: Background
// Created: 2015-01-03

// *** Set window properties ***
SetWindowTitle(“Background”)
SetWindowSize(1024, 768, 0)
SetDisplayAspect(1024 / 768.0)
UseNewDefaultFonts(1)

//*** Cycle through random background colours ***
do
 //*** Generate random value for each colour ***
 red = Random(0,255)
 green = Random(0,255)
 blue = Random(0,255)

 //*** Clear the screen using the new colour ***
 SetClearColor(red,green,blue)
 Sync()
 //*** Wait for 0.5 seconds ***
 Sleep(500)
loop

Now there is enough time to show the selected colour over
the whole background before another colour is generated.

Activity 4.27
Modified code for Background:

// Project: Background
// Created: 2015-01-03

// *** Set window properties ***
SetWindowTitle(“Background”)
SetWindowSize(1024, 768, 0)
SetDisplayAspect(1024 / 768.0)
UseNewDefaultFonts(1)

//*** Cycle through random background colours ***
do
 //*** Clear the screen using the new colour ***
 SetClearColor(Random(0,255),Random(0,255),
 Random(0,255))
 Sync()
 //*** Wait 0.5 seconds ***
 Sleep(500)
loop

Note The symbol is used to indicate the continuation of a
single line of code.

Activity 4.28
Modified code for Dice:

// Project: Dice
// Created: 2015-01-03

//*** Set window properties ***
SetWindowTitle(“Dice”)
SetWindowSize(1024, 768, 0)
SetDisplayAspect(1024 / 768.0)
UseNewDefaultFonts(1)

//*** Seed generator *** TO BE REMOVED
SetRandomSeed(12) //TO BE REMOVED

//*** Throw dice ***
dice = Random(1,6)

do
 //*** Display value thrown ***
 PrintC(“Value thrown was : “)
 Print(dice)
 Sync()
loop

The program always generates a 6.

Activity 4.29
No solution required.

Activity 4.30
Reload your Dice project.
Modify the startup.agc file setting the width to 768 and the
height to 1024.
Copy Buttons.png and Buttons subtext.txt into the project’s
media folder.
Copy Buttons.agc into the project’s main folder.

Right click on Dice in the Projects Panel.
Select Add files from the popup menu.
Select Buttons.agc from the files listed.

Modified code for :
// Project: Guess
// Created: 2015-01-03

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window properties ***
SetWindowTitle(“Guess”)
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Generate number (0 to 9) ***
dice = Random(0,9)

//*** Display user prompt ***
PrintC(“Guess what my number is : “)
Sync()
Sleep(2000)

//*** Get an integer value from the buttons ***
guess = GetButtonEntry()

do
 //*** Display number generated ***
 PrintC(“My number was : “)
 Print(dice)
 PrintC(“Your guess was : “)
 Print(guess)
 Sync()

loop

Activity 4.31
Start a new project called SquareRoot.
Compile the project to create the media folder.
Copy Buttons.png and Buttons subtext.txt into the project’s
media folder.
Copy Buttons.agc into the project’s main folder.
Change the contents of main.agc to match that given in FIG-
4.34.
Compile the program.

Activity 4.32
Running the program using the value of 16 gives the result
4.0.

Activity 4.33
The expected result using the value zero would be zero.

Using -9 would result in an error since negative values do not

Hands On AppGameKit Studio Volume 1: Data 165

have a square root.

However, our on-screen buttons do not offer a minus sign, so
we have (accidentally) created a user interface which makes
it impossible to enter invalid values!

166 Hands On AppGameKit Studio Volume 1: Data

Selection

Hands On AppGameKit Studio Volume 1: Selection 167

In this Chapter:

T if...endif Statement

T Conditions

T Relational Operators

T Boolean Operators

T if...then Statement

T Nested if Statements

T select Statement

T Testing Selection Structures

168 Hands On AppGameKit Studio Volume 1: Selection

Binary Selection

Introduction
As we saw in structured English, many algorithms need to perform an action only
when a specified condition is met. The general form for this statement was:

 IF condition THEN
 action
 ENDIF

Hence, in our guessing game, we described the response to a correct guess as:
 IF guess = number THEN
 Say “Correct”
 ENDIF

As we’ll see, AGK also makes use of an if statement to handle such situations.

The if Statement
In its simplest form, the if statement in AGK BASIC takes the format shown in FIG-
5.1.

where:

 condition is any term which can be reduced to a true or false value.

 statement is any executable AGK BASIC statement.

The arrowed line within the diagram also tells us that we can have as many statements
between condition and endif as we require.

If condition evaluates to true, then the set of statements between the if and endif
terms are executed; if condition evaluates to false, then the set of statements are
ignored and execution moves on to any statement following the endif term.

Condition

Generally, the condition will be an expression in which the relationship between two
quantities is compared. For example, the condition

no < 0

will be true if the content of the variable no is less than zero (i.e. negative).

A condition is sometimes referred to as a Boolean expression and has the general
format given in FIG-5.2.

where:

FIG-5.1

if (format 1)

�
Unlike the IF in
structured English,
AGK BASIC does not
use the word THEN.

if condition

statement

endif

FIG-5.2

Boolean
Expression

value1 value2relational operator

Hands On AppGameKit Studio Volume 1: Selection 169

 value1 and value2 may be constants, variables, or expressions.

 relational operator is one of the symbols given in FIG-5.3.

From our condition syntax diagram, we can see that each of the following are valid
conditions:

no1 < 7
answer# <> no1# * 2
gender$ = “female”

The values being compared should normally be of the same type, but it is acceptable
to mix integer and real values as in the conditions:

v > x#
t# < 12

However, it is not possible to compare a numeric against a string value. Therefore,
conditions such as

name$ = 34
no1 <> “16”

are invalid.

When two strings are checked for equality as in the condition
if name$ = “Fred”

the condition will only be considered true if the match is an exact one. Even the
slightest difference between the two strings will return a false result (see FIG-5.4).

Spaces count as characters too. So if one or more spaces are included in a string, their
number and positions within two strings must also match if the strings are to be
considered equal. Since spaces are so important, we will occasionally represent
spaces within a string using a triangle symbol. This means that rather than show the
contents of a string as

FIG-5.3

The Relational
Operators

 English Symbol

is less than <
is less than or equal to <=
is greater than >
is greater than or equal to >=
is equal to =
is not equal to <>

Activity 5.1

Which of the following are NOT valid Boolean expressions?

a) no1 < 0 b) name$ = “Fred” c) no1 * 3 >= no2 - 6
d) v# => 12.0 e) total <> “0” f) address$ = 14 High Street

FIG-5.4

String
Comparison 1

String1 String2

fred Fred Strings not equal

Lowercase
f

Uppercase
F

=>

170 Hands On AppGameKit Studio Volume 1: Selection

Hello world

we may see
HelloΔworld

This is only done when clarification of the exact contents of a string is required. For
example, the strings hello and hello∆ are not equal because the second string contains
a space character after the letter o.

Not only is it valid to test if two string values are equal, or not equal, as in the
conditions

if name$ = “Fred”
if village$ <> “Drummore”

it is also valid to test if one string value is greater or less than another. For example,
it is true that

“B” > “A”

Such a condition is considered true not because B comes after A in the alphabet, but
because the binary code used within the computer to store a B has a greater numeric
value than the code used to store A. And, although the coding used means that the
order of the letters’ values match their order in the alphabet, there are differences. For
example, all lowercase letters have a higher numeric value than any uppercase letter.
Hence, z is greater than Z, M, or A.

The method of coding characters is known as UTF-8 and is equivalent to the older
ASCII (American Standard Code for Information Interchange) system for the original
character set. This coding system is given in Appendix A at the back of the book.

If we are comparing strings which only contain letters, then one string will be less
than another if that first string appears first in an alphabetically ordered list. Hence,

 “Aardvark” is less than “Abolish”

But remember to watch out for upper and lower case differences as in
“Aardvark” < “aardvark”

which is true since A is less than a.

If two strings differ in length, with the shorter matching the first part of the longer as
in

“abc” < “abcd”

then the shorter string is considered to be less than the longer string. Because the
computer compares strings using their internal codes, it can make sense of a condition
such as

“$” < “?”

which is also considered true since the $ sign has a smaller value than the ? character
in the UTF-8 and ASCII coding systems.

Activity 5.2

Determine the result of each of the following conditions (true or false). You
may have to examine the ASCII coding at the end of the book for f).

a) “wxy” = “w xy” b) “def” < “defg” c) “AB” < “BA”
d) “cat” = “cat.” e) “dog” = “Dog” f) “*” > “&”

Hands On AppGameKit Studio Volume 1: Selection 171

Structured English to Code

It is not always obvious how to translate an IF statement written in structured English
to programming code. In fact, some may take a great deal of coding. For example,
the structured English

 IF the text entered contains any punctuation marks THEN
 Remove the punctuation marks from the text
 ENDIF

would require several lines of programming code to achieve the required result. On
the other hand, some statements that might look difficult to code are very simple:

 Structured English:
 IF number is negative THEN
 Make it positive
 ENDIF

 Code:
 if number < 0
 number = -number
 endif

 Structured English:
 IF number is even THEN
 Display “Even number”
 ENDIF

 Code:
 if Mod(number, 2) = 0
 Print(”Even number”)
 endif

Since we are always interested in creating efficient algorithms, the slight problem
with the solution to Activity 5.3 is that the if statement is inside the do...loop
structure. And, although the Print() statement must be there to have the message
remain on the screen, it seems inefficient to have the if statement there too, since we
know that the condition, after being tested once, will always return the same result.

To get round this, we can change the logic of the program slightly as follows:
Read in values for no1 and no2
Set message to an empty string
IF no1 is exactly divisible by no2 THEN
 Set message to “Exactly divisible”
ENDIF
Print message

Activity 5.3

Start a new project EnglishToCode. The program will accept values from the
screen buttons we used in previous programs. The program should implement
the following logic:

 Read in values for no1 and no2
 IF no1 is exactly divisible by no2 THEN
 Display “Exactly divisible”
 ENDIF

Test your program.

172 Hands On AppGameKit Studio Volume 1: Selection

Now, only the last line of the algorithm needs to be within the do...loop structure.

Longer if Structures

As we have already said, the syntax diagram for the if statement shows us that we
can have more than one statement between the condition and the term endif. For
example, if a game which used two dice required the dice to be re-thrown if they both
showed the same value, then we would write:

if dice1 = dice2
 dice1 = Random(1,6)
 dice2 = Random(1,6)
endif

Compound Conditions - the and and or Operators

Two or more simple conditions (like those given earlier) can be combined using
either the term and or the term or (just as we did in structured English in Chapter 1).

The term and should be used when we need two conditions to both be true before an
action should be carried out. For example, if a game requires us to throw two sixes
to win, this could be written as:

dice1 = Random(1,6)
dice2 = Random(1,6)
if dice1 = 6 and dice2 = 6
 Print(“You win!”)
endif

The statement Print(“You win!”) will only be executed if both conditions, dice1
= 6 and dice2 = 6, are true.

Activity 5.4

Modify EnglishToCode to match the new logic described above and test your
program.

Activity 5.5

Load Guess, the project you created in Chapter 4. Modify the program so that,
after the player has typed in his guess, the program displays the word Wrong if
the guess and number values are not equal.

Activity 5.6

Modify the latest version of Guess so that when the number generated differs
from the guess, the program displays the word Wrong and the difference
between the two numbers. For example if the computer generates the value 8
and the player guesses 3 then the output would be:

 Wrong. You were out by 5
 My number was 8
 Your guess was 3

Hands On AppGameKit Studio Volume 1: Selection 173

In Chapter 1 we saw that there are four possible combinations for an if statement
containing two simple expressions. Because these two conditions are linked by the
and operator, the overall result will only be true when both conditions are true. These
combinations are shown in FIG-5.5.

We link conditions using the or operator when we require only one of the conditions
given to be true. For example, if a dice game produces a win when the total of two
dice is either 7 or 11, we could write the code for this as:

dice1 = Random(1,6)
dice2 = Random(1,6)
total = dice1 + dice2
if total = 7 or total = 11
 Print(“You win!”)
endif

All possible combinations for two conditions linked by an or are shown in FIG-5.6.

When we use multiple conditions linked with and or or, each condition must be
properly formed; we cannot shorten things the way we might in standard English.
Hence, the compiler would not accept us changing the if statement given above to

if total = 7 or 11

There is no limit to the number of conditions that can be linked using and and or. For
example, a statement of the form

 IF condition1 AND condition2 AND condition3

means that all three conditions must be true, while the statement
 IF condition1 OR condition2 OR condition3

means that at least one of the conditions must be true.

FIG-5.5

AND
Combinations

 condition 1 condition 2 condition 1 AND condition 2

 false false false
false true false
true false false
true true true

FIG-5.6

OR
Combinations

 condition 1 condition 2 condition 1 OR condition 2

 false false false
false true true
true false true
true true true

Activity 5.7

Start a new project called TwoDice. Create a program using the two-dice code
given above to display You win! when the dice total is 7 or 11.

Add statements to display the values thrown on the two dice. This should
appear irrespective of the values thrown.

174 Hands On AppGameKit Studio Volume 1: Selection

A compound condition can also contain a mix of and and or operators. An obvious
example of this is the description of how to save a file in AGK:

IF Save button pressed OR Ctrl key held down AND S key pressed THEN
	 	 Save	current	file
ENDIF

The trouble with conditions like this is that they are open to more than one
interpretation. We could take it to mean

 that we must press the S key while either clicking on the Save button or
 holding down the Ctrl key

rather than the intended

 either clicking on the Save button or holding down the Ctrl key while pressing
 the S key.

Once we start to create conditions containing both and and or operators, we need to
be aware that Boolean operators (and, or and not – not is covered in the next section)
have a priority order just as arithmetic operators do.

In a condition that contains both and and or, the and operator takes precedence over
the or operator. Knowing this eliminates any ambiguity in the conditions for saving
a file in the example above.

The normal rule of performing the and operation before or can be modified by the
use of parentheses. Expressions within parentheses are always evaluated first. Hence,
if we really did have to press the S key while pressing the Save button or holding
down the Ctrl key, we would write the condition as

 (Save button pressed OR Ctrl key down) AND S key pressed

Activity 5.8

Modify your TwoDice project so that the You win! message also appears if both
dice have equal values.

Test your program.

Activity 5.9

Start a new project called ThreeDice. In this game three dice are thrown. If at
least two dice show the same value, the player has won. Write a program which
implements the following basic logic

 Throw all three dice
 IF any two dice match THEN
 Display “You win!”
 ENDIF
 Display the value of each dice

but adjust it slightly so that the if statement is not within the do...loop.

Test your program.

Hands On AppGameKit Studio Volume 1: Selection 175

The not Operator

AGK BASIC’s not operator works in exactly the same way as that described in
Chapter 1. It is used to negate the final result of a Boolean expression.

In the ThreeDice project we created in Activity 5.9, the if statement used was
if dice1 = dice2 or dice1 = dice3 or dice2 = dice3
 Print(“You win”)
endif

Now, if we wanted to change the game to display “You lose” instead of “You win”
then we would have to test for the opposite condition.

As we can see, working out the opposite condition takes a few moments - we may
even have got it wrong on our first attempt. It’s much easier, given that we already
have the condition required for the “You win” message, just to add a not to the
condition:

if not (dice1 = dice2 or dice1 = dice3 or dice2 = dice3)
 Print(“You lose”)
endif

Note that the original condition is placed in parentheses. This is because the not
operator has an even higher priority than and and or. Without the parenthesis, the not
operation would be applied to the first term only – dice1 = dice2.

The Boolean operator priority is shown in FIG-5.7.

Activity 5.10

A program accepts three integer values from the user. These three values
are stored in variables no1, no2 and no3. Write down the first line of an if
statement which meets the following conditions:

a) no1 lies between 1 and 12.

b) no2 lies outside the range 1 to 20.

c) no1 is not zero and no2/no1 is greater than no3.

d) no1 is negative and at least one of the other values is positive.

e) At least two of the values are even.

Activity 5.11

Without using the not operator, write down the condition that should be tested
when displaying “You lose” in the ThreeDice game.

FIG-5.7

Boolean Priority Operator Priority

()

and
not

1
2
3
4or

176 Hands On AppGameKit Studio Volume 1: Selection

else – Creating Two Alternative Actions

Like structured English, AGK BASIC offers an else extension to the basic if
statement where we can specify any actions to be taken only when the specified
condition is false. For example, we can add the word else to our original if statement
in the guessing game to allow for two alternative messages:

if guess = number
 Print(“Correct”)
else
 Print(“Wrong”)
endif

This gives us the longer version of the if statement format as shown in FIG-5.8.

Note that we can have an unlimited number of statements between else and endif.

FIG-5.8

if...else...endif

if condition

else

statement

endif

statement

Activity 5.12

In your Guess program, modify the existing if statement to match the version
given above so that either “Correct” or “Wrong” is displayed. Remove the code
to calculate the difference between the number and guess values.

Test and save your program.

Activity 5.13

Start a new project called TwoNumbers. Make use of the button input files to
read in two integer values and then display the smaller of the two numbers.
Also display a message indicating whether this smaller value is an odd or even
number. The program should use the logic below:

 Display	a	prompt	message	for	first	number
	 Read	the	first	number
 Display a prompt message for the second number
 Read the second number
	 IF	first	number	is	less	than	the	second	number	THEN
	 	 Set	answer	to	first	number
 ELSE
 Set answer to second number
 ENDIF
 IF answer is an even number THEN
 Set message to “Even”
 ELSE
 Set message to “Odd”
 ENDIF
 Display answer and message

Hands On AppGameKit Studio Volume 1: Selection 177

The Other if Statement
AGK BASIC actually offers a second version of the if statement which has the
format shown in FIG-5.9.

As with the previous if statement, the else section is optional but this version uses
the word then and omits the endif term. Also, as the syntax diagram shows, we are
restricted to a single statement after the then and else terms.

A major restriction when using this version of the if statement is that the else
section of the statement must appear on the same line of the screen as the rest of the
statement.

This means that the code we added in Activity 5.12 would have to be written as:
if number = guess then Print(“Correct”) else Print(“Wrong”)

This lack of indented layout is enough to have the hardened programmer throw up
his hands in horror!

Even when a single statement within the if statement is sufficient for the logic being
coded, it is probably best to avoid this version of the if statement, since the
requirement to place the if and else terms on the same line does not allow a good
layout for the program code.

Summary
■ Conditional statements are created using the if statement.

■ A Boolean expression is one which gives a result of either true or false.

■ Conditions linked by the and operator must all be true for the overall result to
be true.

■ Only one of the conditions linked by the or operator needs to be true for the
overall result to be true.

■ When the not operation is applied to a condition, it inverts the overall result.

■ The statements following a condition are only executed if that condition is
true.

■ Statements following the term else are only executed if the condition is false.

■ A second version of the if statement is available in AGK BASIC in which if
and else must appear on the same line.

FIG-5.9

if...then...else

if condition elsestatement statementthen []

Activity 5.14

a) What is a Boolean expression?
b) How many relational operators are there?
c) If a condition contains and, or and not operators, which will be
 performed first?

178 Hands On AppGameKit Studio Volume 1: Selection

Multi-Way Selection

Introduction
A single if statement is fine if all we want to do is perform one of two alternative
actions, but what if we need to select one option from three or more alternatives?
How can we create code to deal with such a situation?

In structured English we used a modified IF statement of the form:
IF
 condition 1:
 action1
 condition 2:
 action 2
ELSE
 action 3
ENDIF

However, this structure is not available in AGK BASIC and hence we must find some
other way to implement multi-way selection.

Nested if Statements
There are two ways of achieving multi-way selection in AGK BASIC. One is to use
nested if statements - where one if statement is placed within another. For example,
let’s assume in the Guess project that we want to display one of three messages:
Correct, Your guess is too high, or Your guess is too low. Our previous solution
allowed for only two alternative messages, Correct or Wrong, and was coded as:

if guess = number
 Print(“Correct”)
else
 Print(“Wrong”)
endif

In this new problem the Print(“Wrong”) statement needs to be replaced by the two
alternatives, Your guess is too high or Your guess is too low. But we already know
how to deal with two alternatives – use an if statement. The if statement for this
situation would be:

if guess > number
 Print(“Your guess is too high”)
else
 Print(“Your guess is too low”)
endif

If we now remove the Print (“Wrong”) statement from our earlier code and substitute
the four lines given above, we get:

if guess = number
 Print(“Correct”)
else
 if guess > number
 Print(“Your guess is too high”)
 else
 Print(“Your guess is too low”)
 endif
endif

We have now created a nested if situation, where the if guess > number statement
is inside the else section of the if guess = number statement.

Hands On AppGameKit Studio Volume 1: Selection 179

There is no limit to the number of if statements that can be nested. Hence, if we
required four alternative actions, we might use three nested if statements, while four
nested if statements could handle five alternative actions. To demonstrate this we’ll
take our number guessing game a stage further and have it display one of five possible
messages:

Your guess is too high (guess is more than 2 above the number)
Your guess is slightly too high (guess is no more than 2 above the number)
Correct (guess equals the number)
Your guess is slightly too low (guess is no more than 2 below the number)
Your guess is too low (guess is more than 2 below the number)

When we have a set of mutually exclusive conditions, as in the Guess example
given above, following the standard layout of indenting within an if statement
results in the layout shown below:

if diff > 2
 Print(“Your guess is too low”)
else
 if diff > 0
 Print(“Your guess is slightly too low”)
 else
 if diff = 0
 Print(“Correct”)
 else
 if diff >= -2
 Print(“Your guess is slightly too high”)
 else
 Print(“Your guess is too high”)
 endif
 endif
 endif
endif

Activity 5.15

Modify your Guess program so that the game will respond with one of three
messages as shown in the code given above.

Test your program.

Activity 5.16

Start a new project called RandomNumber. The program should generate a
random number in the range -12 to +12. Depending on the value generated, the
program should then display one of the following messages: "Negative", "Zero"
or "Positive" as well as the number that was generated.

Test your program.

Activity 5.17

Reload Guess. Modify the code so that it displays the appropriate message from
those given above. (HINT: You’ll have to calculate the difference between the
guess and number values again.)

Test your program.

�
Mutually exclusive
conditions refers to a
set of conditions where
no more than one of
those conditions can be
true at the same time.

180 Hands On AppGameKit Studio Volume 1: Selection

In a situation that included even more options, the indentation can be so extreme that
we may reach the right-hand side of the screen! To solve this problem one possible
option re-arrange the layout of nested if statements to be

if diff > 2
 Print(“Your guess is too low”)
else
if diff > 0
 Print(“Your guess is slightly too low”)
else
if diff = 0
 Print(“Correct”)
else
if diff >= -2
 Print(“Your guess is slightly too high”)
else
 Print(“Your guess is too high”)
endif
endif
endif
endif

As we can see, each option is given the same indention as the last. This gives a much
neater layout which is still easy to follow.

elseif

The only problem with the previous solution is the need for so many endif terms at
the end of the selection process. To avoid this we can replace the separate else if
terms with the single word elseif. When we do this, only a single endif term is
required at the end of the structure:

if diff > 2
 Print(“Your guess is too low”)
elseif diff > 0
 Print(“Your guess is slightly too low”)
elseif diff = 0
 Print(“Correct”)
elseif diff >= -2
 Print(“Your guess is slightly too high”)
else
 Print(“Your guess is too high”)
endif

The select Statement
An alternative, and often clearer, way to deal with choosing one action from many is
to employ the select statement. The simplest way to explain the operation of the
select statement is to give an example.

Activity 5.18

Modify the layout of your Guess program to conform to this new layout style
for multi-way selection. Retest your project.

Activity 5.19

Modify Guess to use the elseif term. Retest your project.

Hands On AppGameKit Studio Volume 1: Selection 181

In the code snippet given below we display the name of the day of week corresponding
to the number generated. For example, 1 results in the word Sunday being displayed.

//*** Generate number in the range 0 to 8 ***
day = Random2(0,8)

//*** Display name of the day generated ***
select day
 case 1
 Print(“Sunday”)
 endcase
 case 2
 Print(“Monday”)
 endcase
 case 3
 Print(“Tuesday”)
 endcase
 case 4
 Print(“Wednesday”)
 endcase
 case 5
 Print(“Thursday”)
 endcase
 case 6
 Print(“Friday”)
 endcase
 case 7
 Print(“Saturday”)
 endcase
endselect

//*** Display the value generated ***
Print(day)

Once a value for day has been generated, the select statement chooses the case
statement that matches that value and executes the code given within that section. All
other case statements are ignored. After the code in the selected case option has been
carried out, control moves to the instructions following the endselect statement.

For example, if day = 3, then the statement given beside case 3 will be executed (i.e.
Print(“Tuesday”)) and the remainder of the whole select..endselect structure
ignored with the next statement executed being Print(day).

If day were to be assigned a value not given in any of the case statements (e.g. 0 or
8), the whole select statement would be ignored and no part of it executed and the
next statement to be executed would be Print(day).

Optionally, a special case statement can be added just before the endselect keyword.
This is the case default option which is used to catch all other values which have
not been mentioned in previous case statements. For example, if we modified our
select statement above to end with the code

 case 7
 Print(“Saturday”)
 endcase
 case default
 Print(“Invalid day”)
 endcase
endselect

then, if a value outside the range 1 to 7 is generated, the statement in the case default

182 Hands On AppGameKit Studio Volume 1: Selection

option will be executed.

FIG-5.10 shows how the select statement is executed.

Several values can be specified for each case option. If the value of the term given
in the select statement matches any of the values listed in a case statement, then the
statement(s) in that case option will be executed. For example, using the lines

num = Random(1,10)
select num
 case 1,3,5,7,9
 Print(“Odd”)
 endcase
 case 2,4,6,8,10
 Print(“Even”)
 endcase
endselect
print(num)

the word Odd would be displayed if any odd number between 1 and 9 was generated.

FIG-5.10

How select Works

select expression

constant1case :
statements

endcase

case default

statements

endcase

endselect

constant2case

statements

endcase

:

3
Once the chosen
section of the select
statement has been
executed, control
moves to the first
statement following
endselect

2 - option 2
if no matching case
value is found, the
statments in the
case default option
are executed

2 - option 1
the statements in
the case containing
a match for
expression are
executed

1
expression is
evaluated

if no case
default is included, then

no part of the select
endselect structure is

executedstatements

[]

[]

Hands On AppGameKit Studio Volume 1: Selection 183

The values given beside the case keyword may also be strings as in the example
below:

//*** Read a name ***
name$ = GetName()

//*** Respond to name entered ***
select name$
 case “Jack”,”Jill” :
 Print(“Hello friend”)
 endcase
 case default
 Print(“I do not know your name”)
 endcase
endselect

Although the case value may also be a real value as in the line
 case 1.52

it is a bad idea to use real values since the machine cannot always store these
accurately. If a float variable contained the value 1.52000001 it would not match
with the case value given above.

The general format of the select statement is given in FIG-5.11.

where:

 expression is a variable or expression which reduces to a single
 integer, real or string value.

 value is a constant of any type (integer, real or string).

 statement is any valid AGK BASIC statement
 (even another select statement!).

�
GetName() is assumed
to be a user-written
function that allows the
player to enter a name.

FIG-5.11

select..endselect

select expression

constantcase []
,

:

statement

endcase

case default

statement

endcase

endselect

Activity 5.20

Start a new project, Days.

The program should generate a random number in the range 0 to 8 and display
the corresponding day of the week if the number is in the range 1 to 7. For any
other value, the message Invalid day should be displayed.

184 Hands On AppGameKit Studio Volume 1: Selection

Not all multi-way selection situations can be coded using the select..endselect
statement. For example, let’s say a number can be in the range 1 to 1000 and we want
to perform specific actions for each of the groupings 1 to 200, 201 to 400, 401 to 600,
601 to 1000, it would be impractical to list all the possible values for each group in
a case line. Instead, we would have to code such a problem using nested if statements.

Testing Selection Code
When a program contains one or more if structures, our test strategy has to change
to cope with this. For every if statement within a program we need to create at least
two test values: one which results in the condition within the if statement being true,
the other results in the condition being false. Therefore, if a program contained the
lines

no = GetButtonEntry()
if Mod(no, 2) = 0
 Print(“This is an even number”)
endif

then we need to have a test value for no which is even and another which is odd. For
example, we could choose the values 10 and 3.

Another important test for conditions involving less than, or greater than operators
is to find out what happens when the variable’s value is exactly equal to the value
against which it is being tested. For example, if a program contained the lines

if result < 0
 Print(“Negative”)
else
 Print(“Positive”)
endif

then we would want to include zero as one of our test values, giving us three test
values: one less than zero, zero, and one greater than zero. So we could use, say, -7,
0 and 8.

Some of our projects don’t allow for user input – instead they use randomly generated
values. So we have no control over what values will be used when the program is run!
For test purposes, in a situation like this, we can modify the program’s code
temporarily so we can control the value used. Hence, in our Numbers project, for
example, we could change the line

no = Random(0,24) - 12

to
no = -7

Activity 5.21

Start a new project, Cards.

Generate a random number in the range 1 to 13 (the number represents the
value of a playing card – 11, 12 and 13 being the Jack, Queen and King).

The program should display the message Court card if 11, 12, or 13 is
generated and Spot card for all other values.

Test your program.

�
This also applies to
less than or equal to
and greater than or
equal to operators.

Hands On AppGameKit Studio Volume 1: Selection 185

Now we can run the program knowing which value is being used and see if we get
the expected result.

In the next two runs of the program we would change the assignment line to 0 and
then 8 to get our other two test values. Once we have satisfied ourselves that the
expected results have been obtained, then we must restore the original code line to
the program allowing the value of no to be generated randomly once more.

When an if statement contains more than one condition linked with and or or
operators, testing needs to check each possible combination of true and false settings.
For example, if a program contained the line

if dice1 = 6 and dice2 = 6

then our tests should include all possible combinations of true and false for the two
conditions. A possible set of values is shown in FIG-5.10.

In a complex condition it is sometimes not possible to create every theoretical
combination of true and false. For example, if a program contains the line

if total = 7 or total = 11 or dice1 = dice2

the theoretical combinations of true and false for the three conditions are as shown
in FIG-5.11.

But several of these combinations are impossible to achieve. The variable total
cannot contain the values 7 and 11 at the same time (the conditions are mutually
exclusive), so the last two combinations shown in the table cannot be achieved. Also
total cannot have a value of 7 and dice1 be equal to dice2 (two identical values must
sum to an even number). For the same reason total cannot be 11 and dice1 = dice2.
This eliminates two more combinations from the table.

So our test data will use test values which create only the remaining 4 combinations.

FIG-5.10

Test Data and
Condition Results

 dice1 dice2 Result

 3 5 false, false
1 6 false, true
6 4 true , false
6 6 true , true

FIG-5.11

Three Condition
Permutations

 total=7 total=11 dice1=dice2

 false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

Activity 5.22

Suggest a set of test values for the latest version of the Guess project (Activity
5.19).

How would we have to modify the program’s code in order to use these test
values?

186 Hands On AppGameKit Studio Volume 1: Selection

Summary
■ The term nested if statements refers to the construct where one or more if

statements are placed within the structure of another if statement.

■ Multi-way selection can be achieved using a nested if structure or by using
the select statement.

■ The select statement can be based on integer, real or string values.

■ The case line can have any number of values, each separated by a comma.

■ The case default option is executed when the value being searched for
matches none of those given in the CASE statements.

■ Testing a simple if statement should ensure that both true and false results are
tested.

■ Where a specific value is mentioned in a condition (as in no < 0) , that value
should be part of the test data.

■ When a condition contains and or or operators, every possible combination of
results should be tested.

■ Nested if statements should be tested by ensuring that every possible path
through the structure is executed by the combination of test data.

■ select structures should be tested by using every value specified in the case
statements.

■ select should also be tested using a value that does not appear in any of the
case statements.

Hands On AppGameKit Studio Volume 1: Selection 187

Solutions
Activity 5.1

a) Valid.
b) Valid.
c) Valid.
d) Invalid. => is not a relational operator (should be >=).
e) Invalid. Integer variable compared with string.
f) Invalid. 14 High Street should be in quotes.

Activity 5.2
a) False. Only the second string contains a space.
b) True. “def”is shorter and matches the first three characters
 of “defg”.
c) True. “A” comes before “B”.
d) False. Only the second string contains a full stop.
e) False. Only the second string contains a capital D.
f) True. “*” has a greater ASCII coding than “&”

Activity 5.3
Code for EnglishToCode:

// Project: EnglishToCode
// Created: 2015-01-06

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window properties ***
SetWindowTitle(“English To Code”)
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Get two values from the buttons ***
Print(“Enter first number : “)
Sync()
Sleep(1000)
no1 = GetButtonEntry()
Print(“Enter second number : “)
Sync()
Sleep(1000)
no2 = GetButtonEntry()

do
 //*** If no1 exactly divisible by no2, display
 message ***
 if Mod(no1,no2) = 0
 Print(“Exactly divisible”)
 endif
 Sync()
loop

Activity 5.4
Modified code for EnglishToCode:

// Project: EnglishToCode
// Created: 2015-01-06

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window properties ***
SetWindowTitle(“English To Code”)
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Get two values from the buttons ***

Print(“Enter first number : “)
Sync()
Sleep(1000)
no1 = GetButtonEntry()
Print(“Enter second number : “)
Sync()
Sleep(1000)
no2 = GetButtonEntry()

//*** Set appropriate message ***
message$ = “”
if Mod(no1,no2) = 0
 message$ = “Exactly divisible”
endif

do
 //***Display message ***
 Print(message$)
 Sync()
loop

Activity 5.5
Modified code for Guess:

// Project: Guess
// Created: 2015-01-03

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window properties ***
SetWindowTitle(“Guess”)
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Generate number (0 to 9) ***
number = Random(0,9)

//*** Display user prompt ***
PrintC(“Guess what my number is : “)
Sync()
Sleep(2000)

//*** Get an integer value from the buttons ***
guess = GetButtonEntry()

do
 //*** If guess isn’t correct, display message ***
 if guess <> number
 Print(“Wrong”)
 endif
 //*** Display number generated ***
 PrintC(“My number was : “)
 Print(number)
 PrintC(“Your guess was : “)
 Print(guess)
 Sync()
loop

Activity 5.6
The if structure in Guess becomes:

if guess <> number
 diff = number - guess
 PrintC(“Wrong. You were out by “)
 Print(diff)
 endif

You may get a negative value displayed when the guess is
greater than the random number generated.

Activity 5.7
Code for TwoDice:

// Project: TwoDice
// Created: 2015-01-09

//*** Set window properties ***
SetWindowTitle(“Two Dice”)
SetWindowSize(1024, 768, 0)

188 Hands On AppGameKit Studio Volume 1: Selection

SetDisplayAspect(1024/768.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Generate dice values ***
dice1 = Random(1,6)
dice2 = Random(1,6)
total = dice1 + dice2

do
 //*** If 7 or 11, display win message ***
 if total = 7 or total = 11
 Print(“You win!”)
 endif

 //*** Display value on dice ***
 PrintC(“Dice 1: “)
 Print(dice1)
 PrintC(“Dice 2: “)
 Print(dice2)
 Sync()
loop

Activity 5.8
The if statement in TwoDice should now read:

if total = 7 or total = 11 or dice1 = dice2
 Print(“You win!”)
endif

Activity 5.9
Code for ThreeDice:

// Project: ThreeDice
// Created: 2015-01-11

//*** Set window properties ***
SetWindowTitle("Three Dice")
SetWindowSize(1024, 768, 0)
SetDisplayAspect(1024/768.0)
UseNewDefaultFonts(1)
ClearScreen()

// *** Throw dice ***
dice1 = Random(1,6)
dice2 = Random(1,6)
dice3 = Random(1,6)

// *** If any two dice match set up message ***
mess$ = ""
if dice1 = dice2 or dice1 = dice3 or dice2 = dice3
 mess$ = "You win!"
endif

do
 //*** Display message ***
 Print(mess$)
 // *** Display values ***
 PrintC("dice 1: ")
 Print(dice1)
 PrintC("dice 2: ")
 Print(dice2)
 PrintC("dice 3: ")
 Print(dice3)
 Sync()
loop

Activity 5.10
a) if no1 >= 1 and no1 <= 12

b) if no2 < 1 or no2 > 20

c) if no1 <> 0 and no2/no1 > no3

d) if no1 < 0 and (no2 > 0 or no3 > 0)

e) if (Mod(no1,2) = 0 and Mod(no2,2) = 0) or

 (Mod(no1,2) = 0 and Mod(no3,2) = 0) or

 (Mod(no2,2) = 0 and Mod(no3,2) = 0)

Activity 5.11
dice1 <> dice2 and dice1 <> dice3 and dice2 <> dice3

Activity 5.12
Modified code for Guess is:

// Project: Guess
// Created: 2015-01-011

//*** Other source file used by program ***
#include "Buttons.agc"

//*** Set window properties ***
SetWindowTitle("Guess")
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Generate number (0 to 9) ***
number = Random(0,9)

//*** Display user prompt ***
PrintC("Guess what my number is : ")
Sync()
Sleep(2000)

//*** Get an integer value from the buttons ***
guess = GetButtonEntry()

do
 //*** Display response to guess ***
 if guess <> number
 Print("Wrong")
 else
 Print("Correct")
 endif
 //*** Display number generated ***
 PrintC("My number was : ")
 Print(number)
 PrintC("Your guess was : ")
 Print(guess)
 Sync()
loop

Activity 5.13
Code for TwoNumbers

// Project: TwoNumbers
// Created: 2015-01-11

// *** Include Buttons functions ***
#include "Buttons.agc"

//*** Set window properties ***
SetWindowTitle("Two Numbers")
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

// *** Display buttons ***
SetUpButtons()

// *** Get numbers ***
Print("Enter first number ")
Sync()
Sleep(2000)
no1 = GetButtonEntry()
Print("Enter second number ")
Sync()
Sleep(2000)
no2 = GetButtonEntry()

// *** Determine smaller value ***
if no1 < no2
 answer = no1
else
 answer = no2
endif

// *** Determine if answer is odd or even ***
if Mod(answer,2) = 0
 mess$ = "This is an even number"

Hands On AppGameKit Studio Volume 1: Selection 189

else
 mess$ = "This is an odd number"
endif

do
 //*** Display smaller ***
 PrintC("Smaller value is ")
 Print(answer)
 //*** Odd or even message ***
 Print(mess$)
 Sync()
loop

Activity 5.14
a) A Boolean expression is an expression whose result is
 either true or false.
b) Six. <, <=, >, >=, =, <>
c) not is performed first, and next and or last. This order
 changes if parentheses are used.

Activity 5.15
Modified code for Guess:

// Project: Guess
// Created: 2015-01-011

//*** Other source file used by program ***
#include "Buttons.agc"

//*** Set window properties ***
SetWindowTitle("Guess")
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Generate number (0 to 9) ***
number = Random(0,9)

//*** Display user prompt ***
PrintC("Guess what my number is : ")
Sync()
Sleep(2000)

//*** Get an integer value from the buttons ***
guess = GetButtonEntry()

do
 //*** Respond to guess ***
 if guess = number
 Print("Correct")
 else
 if guess > number
 Print("Too high")
 else
 Print("Too low")
 endif
 endif

 //*** Display number generated ***
 PrintC("My number was : ")
 Print(number)
 PrintC("Your guess was : ")
 Print(guess)
 Sync()
loop

Activity 5.16
Code for RandomNumber:

// Project: RandomNumber
// Created: 2015-01-11

//*** Set window properties ***
SetWindowTitle("Random Number")
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()
// *** Generate number ****
no = RandomSign(Random(0,12))

// *** Set up message ***
if no < 0
 mess$ = "Negative"
else
 if no = 0
 mess$ = "Zero"
 else
 mess$ = "Positive"
 endif
endif

do
 //*** Display message ***
 Print(mess$)
 // *** Display number ***
 PrintC("Number : ")
 Print(no)
 Sync()
loop

Notice the use of RandomSign() to generate negative as well
as positive values.

Activity 5.17
Modified code for Guess:

// Project: Guess
// Created: 2015-01-011

//*** Other source file used by program ***
#include "Buttons.agc"

//*** Set window properties ***
SetWindowTitle("Guess")
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Generate number (0 to 9) ***
number = Random(0,9)

//*** Display user prompt ***
PrintC("Guess what my number is : ")
Sync()
Sleep(2000)

//*** Get an integer value from the buttons ***
guess = GetButtonEntry()

//*** Calculate difference ***
diff = number - guess

do
 //*** Respond to guess ***
 if diff > 2
 Print("Your guess is too low")
 else
 if diff > 0
 Print("Your guess is slightly too low")
 else
 if diff = 0
 Print("Correct")
 else
 if diff >= -2
 Print("Your guess is slightly too high")
 else
 Print("Your guess is too high")
 endif
 endif
 endif
 endif

 //*** Display number generated ***
 PrintC("My number was : ")
 Print(number)
 PrintC("Your guess was : ")
 Print(guess)
 Sync()
loop

190 Hands On AppGameKit Studio Volume 1: Selection

Activity 5.18
The multi-way selection section of Guess’s code should now
be have the following layout:

if diff > 2
 Print(“You guess is too low”)
else if diff > 0
 Print(“Your guess is slightly too low “)
else if diff = 0
 Print(“Correct”)
else if diff >= -2
 Print(“Your guess is slightly too high”)
else
 Print(“Your guess is too high”)
endif endif endif endif

Activity 5.19
New new multi-way selection coding in Guess should now
be:

if diff > 2
 Print(“You guess is too low”)
elseif diff > 0
 Print(“Your guess is slightly too low “)
elseif diff = 0
 Print(“Correct”)
elseif diff >= -2
 Print(“Your guess is slightly too high”)
else
 Print(“Your guess is too high”)
endif

Activity 5.20
Code for Days:

// Project: Days
// Created: 2015-01-11

//*** Set window properties ***
SetWindowTitle("Days")
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

// *** Generate value ***
day = Random(0,8)

do
 // *** Display day of week ***
 select day
 case 1:
 Print("Sunday")
 endcase
 case 2:
 Print("Monday")
 endcase
 case 3:
 Print("Tuesday")
 endcase
 case 4:
 Print("Wednesday")
 endcase
 case 5:
 Print("Thursday")
 endcase
 case 6:
 Print("Friday")
 endcase
 case 7:
 Print("Saturday")
 endcase
 case default
 Print("Invalid day")
 endcase
 endselect
 // *** Display number generated ***
 Print(day)
 Sync()
loop

Activity 5.21

Code for Cards:
// Project: Cards
// Created: 2015-01-11

//*** Set window properties ***
SetWindowTitle("Cards")
SetWindowSize(768,1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

// *** Generate card value ***
card = Random(1,13)

do
 // *** Display card type ***
 select card
 case 11,12,13
 Print("Court card")
 endcase
 case default
 Print("Spot card")
 endcase
 endselect
 Print(card)
 Sync()
loop

Note that all spot cards can be handled in the case default
option because there is no chance of an invalid value being
used.

Activity 5.22
The test data needs to cover all the possible paths through the
nested if statements. In doing this we will have tested each
condition for both true and false options.

So possible values are

 dice guess Expected results
 8 2 Your guess is too low
 5 4 Your guess is slightly too low
 7 7 Correct
 2 4 Your guess is slightly too high
 3 8 Your guess is too high

In addition, we would expect the values of number and guess
to be displayed.

Since the number values are randomly generated it would
be impractical to use our test data. We can overcome this
problem by setting the variable number to a specific value
rather than determining its value using Random(). Once testing
is complete, the random assignment can be restored.

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 191

In this Chapter:

T while...endwhile Structure

T repeat...until Structure

T for...next Structure

T do...loop Structure

T Validating Input

T The exit Statement

T Testing Iterative Structures

T Using the Debugger

Iteration and Debugging

192 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

Iteration

Introduction
Iteration is the term used when one or more statements are carried out repeatedly.
As we saw in Chapter 1, structured English has three distinct iterative structures:
FOR. ..ENDFOR, REPEAT...UNTIL and WHILE...ENDWHILE.

AGK BASIC, on the other hand, has four iterative structures. The while...endwhile
and repeat...until structures take a similar form to their structured English
equivalent. The for...next structure performs the same purpose as structured
English’s FOR...ENDFOR but has a more complex syntax. The final construct, do...
loop, has no equivalent in structured English being an iteration that never stops.

The while...endwhile Construct
The while statement loop structure is identical in operation to the WHILE loop in
structured English but drops structured English’s term DO.

This structure allows us to continually execute a section of code as long as a specified
condition is being met. For example, back in Chapter 1 we described the rules for the
dealer in the card game Blackjack as:

Calculate the value of the initial two cards in hand
WHILE value of cards in hand is less than 17 DO
 Take another card
ENDWHILE

This can be coded in AGK BASIC as:
value = card1 + card2
while value < 17
 value = value + Random(1,10)
endwhile

Here the Random(1,10) term is used to simulate (not entirely accurately) the value of
a new card.

The syntax of AGK BASIC’s while...endwhile construct is shown in FIG-6.1.

where:

 condition is a Boolean expression and may include and, or, not
 and parentheses as required.

 statement is any valid AGK BASIC statement.

The while...endwhile construct is an entrance-controlled loop. That is, the
condition at the start of the loop is tested and only if that condition is true, are the
statements within the loop executed. When the endwhile term is reached, control

FIG-6.1

while....
endwhile

while condition

statement

endwhile

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 193

returns to the while line and the condition is retested. If the condition is found to be
false, then looping stops with an immediate jump from the while line to the endwhile
line, skipping the statements in between.

A visual representation of how this loop operates is shown in FIG-6.2.

Note that the loop body may never be executed if condition is false when first tested.

A common use for this loop statement is validation of input. So, for example, in our
number guessing game, we might ensure that the user types in a value between 0 and
9 when entering their guess by using the logic

 Get guess
 WHILE guess outside the range 0 to 9 DO
 Display error message
 Get guess
 ENDWHILE

which can be coded in AGK BASIC using our GetButtonEntry() function as:
//*** Display user prompt ***
Print(“Guess what my number was (0 to 9) : ”)
Sync()
Sleep(2000)

//*** Get a guess in range 0 to 9 ***
guess = GetButtonEntry()
while guess < 0 or guess > 9
 Print(“Your guess must be between 0 and 9”)
 Print(“Enter your guess again(0 - 9) : ”)
 Sync()
 Sleep(2000)
 guess = GetButtonEntry()
endwhile

FIG-6.2

How while...
endwhile Operates

Earlier Statements

Later Statements

while condition

statements

endwhile

False

True

�
The test guess < 0 is not
required since the function
GetButtonEntry() does not
allow negative values to be
entered. However, the condition
has been included so that,
should GetButtonEntry()
ever be modified to allow entry
of negative values, the while
loop will catch any values less
than zero.

Activity 6.1

Modify your Guess project to incorporate the code given above. Check that the
program works correctly by attempting to make guesses which are outside the
range 0 to 9.

194 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

The repeat...until Construct
Like structured English, AGK BASIC has a repeat...until statement. The two
structures are identical. Hence, if in structured English we write

 Set total to zero
 REPEAT
 Get a number
 Add number to total
 UNTIL number is zero

then the same logic would be coded in AGK BASIC as
 total = 0
 repeat
 number = GetButtonEntry()
 total = total + number
 until number = 0

The repeat...until statement is an exit-controlled loop structure. That is, the
action within the loop is executed and then an exit condition is tested. If that condition
is found to be true, then looping stops, otherwise the statements specified within the
loop are executed again. Iteration continues until the exit condition is true.

The syntax of the REPEAT statement is shown in FIG-6.3.

where:

 condition is a Boolean expression and may include and, or, not and
 parentheses as required.

 statement is any valid AGK BASIC statement.

Activity 6.2

A simple dice game involves counting how many times in a row a pair of dice
can be thrown to produce a value of 8 or less. The game stops as soon as a
value greater than 8 is thrown.

Create a new project, DiceCount, which implements the following logic:

 Set count to zero
 Throw the two dice
 Display dice values
 WHILE the sum of the two dice <= 8 DO
 Add 1 to count
 Throw the two dice
 Display dice values
 ENDWHILE
 Display “You had a run of “ , count, “throws”

Test your program.

�
The code assumes we
are using the Button
routines introduced in
the previous chapter
to accept input.

FIG-6.3

repeat...until

repeat

condition

statement

until

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 195

The operation of the repeat...until construct is shown graphically in FIG-6.4.

The for...next Construct
In structured English, the FOR loop is used to perform an action a specific number
of times. For example, we might describe dealing seven cards to a player using the

FIG-6.4

How repeat..until
Operates

Earlier Statements

Later Statements

repeat

condition

statements

until False

True

Activity 6.3

Create a project (Total) to read in a series of integer values, stopping only when
a zero is entered. The values entered should be totalled and that total displayed
at the end of the program. Use the Buttons routines to accept input.

Use the following logic:

 Set total to zero
 REPEAT
 Get a number
 Add number to total
 UNTIL number is zero
 Display total

Test your project.

Activity 6.4

Modify Guess to allow the player to keep guessing until the correct number is
arrived at.

Test your project.

196 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

logic:
 FOR 7 times DO
 Deal card
 ENDFOR

Sometimes the number of times the action is to be carried out is less explicit. For
example, if each player in a game is to pay a £10 fine we could write:

 FOR each player DO
	 	 Pay	£10	fine
 ENDFOR

However, in both of these examples, the action specified between the FOR and
ENDFOR terms will be executed a known number of times.

In AGK BASIC the for...next construct makes use of a variable to keep a count of
how often the loop is executed and the first line of the structure takes the form:

for variable = start_value to finish_value

Hence, if we want a for loop to iterate 7 times we could begin with
for c = 1 to 7

In this case c would automatically be assigned the value 1 when the for loop is about
to start. Each time the statements within the loop have been executed, c will be
incremented, and eventually, when c is equal to 7 and the loop body has been
executed, iteration stops.

The variable used in a for loop is known as the loop counter.

While structured English marks the end of a FOR loop using the term ENDFOR, in
AGK BASIC the end of the loop is indicated by the term next followed by the name
of the loop counter variable used in the for statement.

The code below makes use of a for loop to display 10 asterisks:
for k = 1 to 10
 print(“*”)
next k
Sync()

The loop counter in a for loop can be made to start and finish at any value, so it is
quite valid to start a loop with the line

Activity 6.5

Write the first line of a for loop that is to be executed 10 times, using a variable
j as the loop counter. The starting value of j should be 1.

Activity 6.6

What would be displayed by the code

 for p = 1 to 10
 print(p)
 next p
 Sync()

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 197

 for m = 3 to 12

The loop counter m will contain the value 3 when the loop is first executed and 12
during the final iteration. The loop will be executed exactly 10 times.

If the start and finish values are identical as in the line
 for r = 10 to 10

 then the loop is executed once only.

Where the start value is greater than the finish value, the loop will not be executed at
all so the code within the loop body will be ignored. Such a result would be produced
from the line

 for k = 10 to 9

Normally, 1 is added to the loop counter each time the loop body is performed.
However, we can change this by adding a step value to the for loop as in the example
shown below:

 for c = 2 to 10 step 2

Here the loop counter, c, will start at 2 and then increment to 4 on the next iteration.
The program in FIG-6.5 uses the step option to display the 7 times table from 1 x 7
to 12 x 7.

By using the step keyword with a negative value, it is even possible to create a for
loop that reduces the loop counter on each iteration as in the line:

 for d = 10 to 0 step -1

This last example causes the loop counter to start at 10 and finish at 0.

FIG-6.5

7 Times Table

// Project: Tables
// Created: 2015-01-12

//*** Set window properties ***
SetWindowTitle(“7 Times Table”)
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display 7 times table ***
do
 for c = 7 to 84 step 7
 Print(c)
 next c
 Sync()
loop

Activity 6.7

Start a new project, Tables, that implements the code shown in FIG-6.5.

Test the program.

Modify the program so that it displays the 12 times table from 1 x 12 to 12 x 12.

Test your project.

198 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

It is possible that the step value given may cause the loop counter never to match the
finish value. For example, in the line

 for c = 1 to 12 step 5

the variable c will take on the values 1, 6, and 11. Looping will always stop before
the variable passes the specified finish value.

The start, finish and step values of a for loop can be defined using a variable or
arithmetic expression as well as a constant. For example, in FIG-6.6 below the user
is allowed to enter the upper limit of the for loop.

The program will display every integer value between 1 and the number entered by
the user.

If this involves more than 30 numbers being displayed, there will not be space within
the app window to show them all. Numbers greater than 30 are written to positions
not visible within the program window. The contents of the window does not scroll
and there are no scrollbars to allow access to a larger area.

Activity 6.8

Modify Tables so that the 12 times table is displayed with the highest value
first. That is, starting with 144 and finishing with 12.

Test your project.

FIG-6.6

Using a Variable in a
for...next Statement

// Project: UserLoop
// Created: 2015-01-21

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window title and size ***
SetWindowTitle(“User Loop”)
SetWindowSize(720,1024,0)
SetDisplayAspect(720.0/1024)
UseNewDefaultFonts(1)

//*** Clear the screen ***
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Get upper limit ***
Print(“Enter for loop upper limit : “)
Sync()
Sleep(2000)
high = GetButtonEntry()

//*** Display values 1 to high ***
do
 for c = 1 to high
 print(c)
 next c
 Sync()
loop

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 199

The for loop counter can also be specified as a real value with a step value which is
not a whole number. For example:

 for ch# = 1.0 to 2.0 step 0.1
 print(ch#)
 next ch#
 Sync()

Although we might have expected the for loop to perform 11 times (1.0,1.1,1.2, etc.
to 2.0), in fact, it only performs 10 times up to 1.900000.

If the output were to display the values produced to more decimal places we’d
understand what was causing the anomaly. Although the final value displayed is
1.900000, a more accurate display would show c to contain the value 1.90000021458.

This difference is caused by rounding errors created when the compiler converts
from the decimal values that we use in the code to the binary values favoured by the
computer.

So, if c has a value of 1.90000021458, attempting to add 0.1 when the for loop
attempts another iteration, would take us past the 2.0 upper limit of the loop and
hence iteration stops.

The underlying cause of the problem is the fact that 0.1 (our step size) cannot be
represented accurately in binary. In fact, the binary value it uses is approximately
equivalent to the decimal value 0.10000002384.

This time the program produces the output we might expect. And this is because the
value 0.2510 can be represented exactly in binary as 0.112.

Activity 6.9

Start a new project, UserLoop, containing the code given in FIG-6.6.
(Remember you have to include the three Buttons files in your project folder).

Modify the program so that the user may also specify the starting value of the
for loop.

Change the program a second time so that the user can specify a step size for
the for loop.

Test each version of the program.

Activity 6.10

Create a project, ForReal, which includes the code given above and check out
the result.

Does the output show all the values between 1.0 and 2.0 (in steps of 0.1) ?

Activity 6.11

Modify ForReal, so that the step size is 0.25. Does the output show all the
values between 1.0 and 2.0 (in steps of 0.25) ?

200 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

The format of the for...next statement is shown in FIG-6.7.

where:

variable is either an integer or float variable. Both variable
tiles in the diagram refer to the same variable. Hence,
the name used after the keywords for and next must be
the same. This variable is known as the loop counter.

v1 is the initial value of the loop counter. The loop counter
will contain this value the first time the statements
within the loop are executed.

v2 is the final value of the loop variable. The loop variable
will usually contain this value the last time the loop
body is executed.

v3 is the value to be added to the loop counter after each
iteration. If this is omitted then a value of 1 is added to
the loop counter.

statement is any valid AKG BASIC statement.

The operation of the for...next statement is shown graphically in FIG-6.8.

FIG-6.7

for...next

for variable v1

next

= to v2 step v3

statement

variable

FIG-6.8

How for...next
Operates

If v3
omitted,

add 1
for variable v1= to v2 step v3

next

statements

variable

Variable
past
v2?

Set
variable to

v1
Add
v3 to

variable

False

True

Later Statements

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 201

Finding the Smallest Value in a List of Values
There are several tasks that will crop up over and over again in our programs. One of
these is finding the smallest (or largest) value in a list of numbers.

This is a trivial enough task for our own brains as long as the list is short enough to
be taken in at a glance, but if asked how we managed to come up with the correct
answer, we might struggle to give a verbal description of the strategy we used.

Now, let’s imagine we wanted to record the coldest temperature achieved in our area
during the current year. Since this involves a longer list of data which also takes a full
year to access, we would have to come up with an organised way of getting the
information we want. Perhaps we could write down the lowest temperature on
January 1st and then check each day to see if a lower temperature has been achieved.
When a lower temperature does occur, we can erase the previous record low and
write down this new temperature. By the end of the year our record would show the
lowest temperature achieved during the year.

This is exactly how we tackle the same type of problem in a computer program. We
set up one variable to hold the smallest value we’ve come across so far and if a later
value is smaller, it is copied into this variable. The algorithm used is given below and
assumes 7 numbers will be entered in total:

 Get number
 Set smallest	to	first	number	
 FOR 6 times DO
 Get number
 IF number < smallest THEN
 Set smallest to number
 ENDIF
 ENDFOR
 Display smallest

Activity 6.12

Create a new project, InTotal, which reads in and displays the total of 6
numbers. Make use of the Buttons files for input.

Test your project.

Activity 6.13

Start a new project called Shades.

Code a program which uses a for loop with a start value of 0 and finish of 255.

Inside the loop, execute a SetClearColor() statement and use the value of
the loop counter as the red parameter to the statement. The green and blue
parameter values for the SetClearColor() statement should both be zero.

Add a delay (using Sleep()) of 25 milliseconds between each iteration of the
loop.

Test your project.

202 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

The exit Statement
The exit statement is used to prematurely terminate the loop currently being
executed. Having executing an exit command, the next statement to be carried out
is the one after the end of the loop. The exit statement format is shown in FIG-6.9.

Normally, the exit statement will appear within an if statement.

Let’s look at an example where the exit statement might come in useful.

In a dice game we are allowed to throw a pair of dice 5 times and our score is the total
of the five throws. However, if during our throws we throw a 1, then our turn ends
and our final score becomes the total achieved up to that point (excluding the throw
containing a 1). We could code this game as shown in FIG-6.10.

Activity 6.14

Create a new project called SmallestNumber.

In this program implement the logic shown above to display the smallest of 5
integer values entered.

Modify the program to find the largest, rather than the smallest, of the numbers
entered. Save your project.

FIG-6.9

exit exit

FIG-6.10

Using exit

// Project: SumDice
// Created: 2015-01-21

//*** Set window properties ***
SetWindowTitle(“Sum Dice”)
SetWindowSize(1024,768,0)
SetDisplayAspect(1024.0/768)
UseNewDefaultFonts(1)
ClearScreen()

//*** Set total to zero ***
total = 0
//*** for 5 times do ***
for c = 1 to 5
 //*** Display number of rolls so far ***
 PrintC(“Roll number “)
 Print(c)
 Sync()
 Sleep(1500)
 //*** Throw both dice ***
 dice1 = Random(1,6)
 dice2 = Random(1,6)
 //*** Display throw number and dice values ***
 PrintC(“dice 1 : “)
 PrintC(dice1)
 PrintC(“ dice 2 : “)
 Print(dice2)
 Sync()
 Sleep(4000)

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 203

The problem highlighted in Activity 6.15 arises because of the way in which the for
loop operates (as shown in FIG-6.8). A for...next loop normally exits only after the
loop counter has past the specified upper limit. So when we want the loop counter to
range in value between 1 and 5, it actually takes on the value 6 before the loop is
exited.

To solve this problem in our SumDice project we will need to add the lines
if c = 6
 dec c
endif

FIG-6.10
(continued)

Using exit

 //*** if either dice is a 1 then quit loop ***
 if dice1 = 1 or dice2 = 1
 exit
 endif
 //*** Add dice throws to total ***
 total = total + dice1 + dice2
next c

do
 //*** Display final score ***
 PrintC(“Your final score was : “)
 Print(total)
 Sync()
loop

Activity 6.15

Create a new project call SumDice containing the code given in FIG-6.10.

Run the program and check that the loop exits if a 1 is thrown.

Modify the program so that the number of throws made is also displayed.

How many throws are reported if none of the throws result in a die showing 1?

Activity 6.16

Modify SumDice so that it reports the correct number of throws when a 1 does
not appear on any die.

Test your project.

Activity 6.17

Modify Guess, so that the program generates a number between 1 and 100 and
the player is allowed up to seven guess to come up with the correct answer,
but exits before all iterations are complete if a correct guess is achieved. The
number of guesses required should also be displayed.

Test your project.

204 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

The continue Statement
The continue statement, like exit, is designed solely for use within a loop structure.
Its effects are less severe than that of exit; rather than exit the loop structure entirely
it exits the current iteration only, jumping back to the start of the loop where the next
iteration of the loop proceeds as normal. The statement has the format shown in FIG-
6.11.

The program in FIG-6.12 demonstrates the effect of the continue statement. The
program generates two random numbers in the range 0 to 20, performs integer
division, dividing the first number by the second and then displays the random
numbers and the result of the calculation. The continue statement is used to skip the
calculation and display statements if the second value generated is zero (since
division by zero is not allowed). Looping stops if the result of the calculation is 1.

Additional Print statements have been added to highlight what is happening when
the program runs.

FIG-6.11

continue

continue

FIG-6.12

Using continue

// Project: TestingContinue
// Created: 2015-02-06

//*** Set window size and title ***
SetWindowSize(1024, 768, 0)
SetWindowTitle(“Testing continue”)
SetDisplayAspect(1024.0/768)
UseNewDefaultFonts(1)
ClearScreen()

//*** Repeat until answer is 1 ***
repeat
 //*** Generate two numbers ***
 no1 = Random(0,20)
 no2 = Random(0,20)
 //*** If the second number is zero, skip ***
 //*** the remainder of this iteration ***
 if no2 = 0
 Print(“Skipping this iteration”)
 Sync()
 Sleep(1000)
 continue
 endif
 //*** Calculate answer ***
 answer = no1 / no2
 //*** Display answer for 1 second ***
 PrintC(no1)
 PrintC(“ / “)
 PrintC(no2)
 PrintC(“ = “)
 Print(answer)
 Sync()
 Sleep(1000)
until answer = 1

do
 Print(“Program complete”)
 Sync()
loop

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 205

In the case of a for loop, executing the continue statement causes control to exit the
current iteration but the loop counter is incremented before the next iteration is
executed. The program in FIG-6.13 uses a continue statement within a for loop to
display only the even numbers between 1 and 20.

The results from Activity 6.19 highlight the difference between continue and exit
with the first terminating the current iteration only while the second terminates the
whole looping operation.

FIG-6.14 shows the difference in the flow of control between these two commands.

Activity 6.18

Create a new project called TestingContinue1 and implement the code in FIG-
6.12.

Test your project and make sure you see the Skipping this iteration message
(this may take several runs of the program).

FIG-6.13

Using continue in a
for Loop

// Project: TestingContinue2
// Created: 2015-02-06

//*** Set window size and title ***
SetWindowSize(1024, 768, 0)
SetWindowTitle(“Testing continue in a for loop”)
SetDisplayAspect(1024.0/768)
UseNewDefaultFonts(1)
ClearScreen()

do
 //*** For 20 times DO ***
 for c = 1 to 20
 //*** If it’s an odd number, skip this iteration ***
 if Mod(c,2) <> 0
 continue
 endif
 //*** Display the number ***
 Print(c)
 next c
 Sync()
loop

Activity 6.19

Create a new project called TestingContinue2 and implement the code in FIG-
6.13.

Test your program and check that only even numbers are displayed.

Modify the program, replacing the continue command with an exit command.

How does the new display differ from the original program’s display?

�
This approach isn’t
the best way to display
even numbers but
is used here only to
demonstrate how the
continue statement
operates.

206 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

The do...loop Construct
The do...loop construct is a rather strange loop structure, since, while other loops
are designed to terminate eventually, the do...loop structure will continue to repeat
the code within its loop body indefinitely.

Under normal circumstances, when a do loop is executing, the program will only
terminate when forced to do so by an external event. In all our projects so far the
external event has been the operating system closing down our program in response
to our clicking on the X button at the top-right of the app window. Alternatively, an
exit statement can be included within the loop to allow the loop to be exited when a
given condition occurs.

As we write more complex programs we will begin to understand why a do loop is
so often needed to get the game to run smoothly.

Another reason that this infinite loop structure is useful is that apps designed to be
run on tablets and smartphones very rarely close on their own, but keep running until
closed by some external command.

The do...loop structure takes the format shown in FIG-6.15.

As we’ve seen in all of our previous programs, the main use of this structure is as an
indefinite loop at the end of our logic.

Nested Loops
A common requirement within a program is to place one loop control structure within
another. This is known as nested loops. For example, to input six game scores (each
between 0 and 100) and then calculate their average, the logic required is:

FIG-6.14

Comparing exit and
continue

Control jumps
to the end of the

loop

exit continue Control returns to
the for statement

and the loop counter
is incremented

FIG-6.15

do...loop

do

statement

loop

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 207

 1. Set total to zero
 2. FOR 6 times DO
 3. Get valid score
 4. Add score to total
 5. ENDFOR
 6. Calculate average as total / 6
 7. Display average

This appears to have only a single loop structure beginning at statement 2 and ending
at statement 6. However, if we add detail to statement 3, this gives us

 3. Get valid score
 3.1 Read score
 3.2 WHILE score is invalid DO
 3.3 Display “Score must be between 0 to 100”
 3.4 Read score
 3.5 ENDWHILE

which, if placed in the original solution, results in a nested loop structure, where a
while loop appears inside a for loop:

 1. Set total to zero
 2. FOR 6 times DO
 3.1 Read score
 3.2 WHILE score is invalid DO
 3.3 Display “Score must be between 0 to 100”
 3.4 Read score
 3.5 ENDWHILE
 4. Add score to total
 5. ENDFOR
 6. Calculate average as total / 6
 7. Display average

Nested for Loops

Perhaps the commonest nested loops are nested for loops. And, although someone
new to programming can sometimes have difficulties with the concept, it is actually
easy enough to see real world examples of how nested for loops work.

Next time you are out in the car, have a look at the odometer (that’s the one that tells
us how many miles/kilometres the car has done). Now, look at the first two digits of
the odometer. As you travel along you’ll see the right hand digit move slowly until it
reaches 9; at that point it returns to zero and the digit to its left increments before the
whole process repeats itself. We see the same sort of thing on a digital clock.

The code in FIG-6.16 emulates those last two digits on the odometer. Initially, they
are set to 00 and then move onto 01, 02 ... 09, 10, 11, etc

Activity 6.20

Turn the above algorithm into an AGK BASIC project, AverageScore, using the
Buttons files to allow input.

Test the program, making sure it operates as expected.

FIG-6.16

Nested for loops

// Project: NestedFor
// Created: 2015-01-21

//*** Set window properties ***
SetWindowTitle(“Nested For Loops”)
SetWindowSize(1024,768,0)

208 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

The tens loop is known as the outer loop, while the units loop is known as the inner
loop.

A few points to note about nested for loops:

■ The inner loop increments fastest.

■ Only when the inner loop is complete does the outer loop variable increment.

■ The inner loop counter is reset to its starting value each time the outer loop
counter is incremented.

Nested Loops and the exit and continue Statements

Where we have a nested loop structure and an exit or continue statement is placed
within the loop body of an inner loop, then control jumps to the end of that inner loop
only, execution of the outer loop continues as normal.

The example in FIG-6.17 shows how an exit statement affects the flow of control
when placed within an inner for loop.

FIG-6.16
(continued)

Nested for loops

SetDisplayAspect(1024.0/768)
UseNewDefaultFonts(1)
ClearScreen()

do
 //*** Nested for loop ***
 for tens = 0 to 9 //Outer loop
 for units = 0 to 9 //Inner loop
 PrintC(tens)
 PrintC(“ “)
 Print(units)
 Sync()
 Sleep(200)
 next units
 next tens
loop

Activity 6.21

Start a new project, NestedFor, and code the program to match FIG-6.16.

Test your project.

Activity 6.22

What would be output by the following code?

 for no1 = -2 to 1
 for no2 = 0 to 3
 PrintC(no1)
 PrintC(“ “)
 Print(no2)
 next no2
 next no1

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 209

Testing Iteration Code
We need a test strategy when looking for errors in iterative code. Where possible, it
is best to create at least three sets of values:

■ Test data that causes the loop to execute zero times.

■ Test data that causes the loop to execute once.

■ Test data that causes the loop to execute multiple times.

For example, in the updated Guess program we added statements to ensure that the
guess entered was in the range 1 to 100 using the following code:

 guess = GetButtonEntry()
 while guess < 1 or guess > 100
 Print(“Your guess must be between 1 and 100”)
 Print(“Enter your guess again(1 - 100) : ”)
 Sync()

FIG-6.17

The exit Statement
Within a Nested Loop for tens = 0 to 2

 PrintC(tens)
 for units = 0 to 9
 if units = 5
 exit
 endif
 Print(units)
 next units
 next tens

1

2

1 When the exit statement is executed control
jumps to the first statement after the end of the
inner for loop (the units for loop) .

2 Since the statement arrived at also marks the
end of the outer for loop (tens loop), the program
jumps back to the start of that for loop,
increments tens and continues as normal.

Activity 6.23

Start a new project, NestedJump, and create a program which includes the code
given in FIG-6.17.

What values are displayed when the program is run?

What values would be displayed if we replaced the term exit with the term
continue?

210 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

 Sleep(2000)
 guess = GetButtonEntry()
 endwhile

To test the while loop in this code we could use the test data shown in FIG-6.18.

The while loop is only executed if guess is outside the range 1 to 100, so Test 1,
which uses a value inside that range, will skip the while loop body giving zero
iterations.

Test 2 starts with an invalid value (101) for guess, causing the while loop body to be
executed, and then uses a valid value (5). This loop is therefore exited after only one
iteration.

Test 3 uses two invalid values (180 and 121) before entering a valid value (32),
causing the while loop body to execute twice.

FIG-6.18

Test Data Test No. guess

1

3
2

23
101, 5
180, 121, 32

Activity 6.24

The following code is meant to calculate the average of a sequence of numbers.
The sequence ends when the value zero is entered. This terminating zero is not
considered to be one of the numbers in the sequence.

 total = 0
 count = 0
 Print(“Enter number (0 to stop)”)
 Sync()
 Sleep(2000)
 num = GetButtonEntry()
 while num <> 0
 total = total + num
 count = count + 1
 Print(“Enter number (0 to stop)”)
 Sync()
 Sleep(1500)
 num = GetButtonEntry()
 endwhile
 average = total / count
 do
 PrintC(“Average is “)
 Print(average)
 Sync()
 loop

Make up a set of test values (similar in construct to FIG-6.18) for the while
loop in the code.

Create a new project, AverageTest, containing the code given above and use the
test data to find out if the code functions correctly.

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 211

There will be cases where using all three test strategies are not possible. For example,
a repeat loop cannot execute zero times and therefore we have to satisfy ourselves
with single and multiple iteration tests.

A for loop, when written for a fixed number of iterations can only be tested for that
number of iterations. So a loop beginning with the line

 for c = 1 to 10

can only be tested for multiple iterations (10 iterations, in this case). The exception
being if the loop body contains an exit statement, in which case zero and one
iteration tests may also be possible by supplying values which cause the exit
statement to be terminated during the required iteration.

A for loop which is coded with a variable upper limit as in
for c = 1 to max

may be fully tested by making sure max has the values 0, 1, and more than 1 during
testing.

A do loop can only be tested for zero and one iteration if it contains an exit statement.

Summary
■ AGK BASIC contains four iteration constructs:

 while...endwhile
 repeat...until
 for...next
 do...loop

■ The while...endwhile construct executes a minimum of zero times and exits
when the specified condition is false.

■ The repeat...until construct executes at least once and exits when the
specified condition is true.

■ The for...next construct is used when iteration has to be done a specific
number of times.

■ A step size may be included in the for statement. The value specified by the
step term is added to the loop counter on each iteration.

■ If no step size is given in the for statement, a value of 1 is used.

■ for loop counters can be integer or real.

■ The start, finish and step values in a for loop can be defined using variables or
arithmetic expressions.

■ If the start value is equal to the finish value, a for loop will execute only once.

■ If the start value is greater than the finish value and the step size is a positive
value, a for loop will execute zero times.

■ Using the do...loop structure creates an infinite loop.

■ The exit statement can be used to exit from any loop.

■ The continue statement can be used to exit the current iteration of a loop.

■ One loop structure can be placed within another loop structure. Such a

212 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

structure is known as a nested loop.

■ When an exit or continue statement is placed within the inner loop of a
nested loop structure, it is only that inner loop that is affected when control
exits the loop structure (exit) or the current iteration (continue).

■ Loops should be tested by creating test data for zero, one and multiple
iterations during execution whenever possible.

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 213

Debugging

Introduction
Unfortunately, we all suffer from logic errors when creating programs which are
more than a few pages in length. We may have coded a calculation incorrectly, used
the wrong variable in an assignment, or tested for the wrong set of conditions. We
may even have omitted a vital test or calculation.

To solve these problems, we need to use Sherlock-Holmes-type cunning to understand
the clues our faulty results produce as an aid to finding out where in our code things
are going wrong.

Detecting and correcting logic errors is known as debugging.

Using Extra Code
One way to discover where the problem lies is to add Print and/or Message()
statements to our program. These can not only be used to display the contents of a
variable, but can also let us know which part of our code is being executed. For
example, in the code

if units = 5
 Message(“Exiting loop”)
 exit

the Message() statement is used to show we have entered the code we expect to be
executed when the variable units contains the value 5 . If the message fails to appear
at the correct time, we would know that there is some fault in the preceding if
statement or in how units is assigned its value.

We might also want to discover the value held in a variable total while the program
is running, and we could do this with the line

Print(total)

This might bring to light the fact that total was not being correctly added to.

Using AGK Studio’s Debugger
A much better way to discover the logic errors in our code is to use a debugger.
Typically, a debugger will make available the following options:

■ To be able to execute a program one statement at a time (known as single-
stepping) under user control.

■ To execute a program as normal until it reaches a specific marked statement in
the code (known as a breakpoint) and then to single step through the code.

■ To view the contents of specified variables as the program executes.

■ To modify the contents of variables and observe how this affects the flow of
control through the program code.

When we single-step through a program, the debugger will highlight the source code
line which is about to be executed. Typically, each statement in the program is
executed by pressing one of the function keys.

214 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

How we use Debug mode in AGK Studio is shown in the frames that follow.

We’ll start by loading an existing project called
TestDebug and add a breakpoint on line 13 by
clicking to the left of that line number.

The program will now execute until it reaches the
line containing the breakpoint. The line containing
the breakpoint won’t be executed.

When using the debugger we must run the
program in debug mode. The simplest way to do
this is to click on the Debug icon in the toolbar.

If the breakpoint appears before the �rst call to
Sync() you may notice the app window is not
yet set correctly.

Switching to the Debug page of the Project
window, we can see the option Add Watch.
This allows us to “watch” the value of a variable as
the program runs.

There are two ways to add the name of any
variable we want to watch. The �rst is to type in
the name and then press the Add watch button.

Alternatively, we can select the variable name in the Edit window then right-click to
produce a popup menu where we can select Add watch.

Breakpoint
added

Click to
run in debug

mode

The icon turns
green to show
program is in
debug mode

Program halts
at the line containing

the breakpoint
App window

contents not yet
updated

Add watch
option

Enter variable
name

Press
button

Select
name

Select
Add watch

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 215

All of the variable names we select will be listed in
the Debug page along with their current values.
If a variable hasn’t been used yet, the current value
is set to zero.

When the if statement is executed, the result of
the condition determines which line will be
executed next. In this case the condition (sum >
30) is false, so the else section will be executed.

When we reach the end of the do...loop
structure, execution skips back to its start.

The next stage is to begin executing the lines of
the program one at a time by pressing the F10 key
or pressing the step button (it appears twice - once
in the Debug page and again in the toolbar).

Each time we press step (or F10) another statement
in the program is executed and other watched
variables are assigned values.

The instruction to be executed is no1 = 12
(where we placed the breakpoint). This causes
the value displayed for no1 in the debug page to
change from 0 to 12 and the next line of code to
be executed to be highlighted.

F10

OR

OR

Line executed
when step key

pressed
Next line to
be executed

Next line to
be executed

Next line to
be executed

Next line to
be executed

false

Activity 6.25

Load the project DebugTest (AGK/Resources/Ch06) and add a breakpoint at the
line no1 = 12 and add watches for variables no1, no2, and sum.

Single step through the program, watching the values displayed for the three
variables in the Debug page.

Stop single stepping when Print(sum) is reached for the second time.

216 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

Activity 6.26

In DebugTest, move the line sum = no1 + no2 so that it is the first line within
the do...loop structure.

Note that under normal circumstances the above move is not a good idea since
we would be continually performing a calculation (on each iteration of the
do loop) but in this case we are doing so to highlight another feature of the
debugger.

Values set up in the watch area of the Debug page
have two associated buttons.

Pressing the left button, changes the watch format
for that line.

The right-most button is used to delete the
variable from the watch list. The button below the
watch list deletes all variables from the list.

With the new options we can increase, decrease
or enter a new value before saving it.

Although the Set and Cancel buttons perform the
same purpose when handling numeric variables,
they have di�ering e�ects when dealing with string
variables...

If we enter Edit mode and change the string to
“ABCDEF” and press Set the new value is stored in
the variable. However, if we press Cancel, the
content reverts to its original value.

Buttons

Edit value
button

Press to
delete watch

Delete all
variables from

watch list

Finalise value and
exit Edit mode

}
Type new

value directly
Or change value

in increments

Finalise
value and
exit Edit

mode

String variable’s
initial value

New value
retained

Old value
reinstated

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 217

Activity 6.27

Execute DebugTest in debug mode and, after the breakpoint is reached, single-
step the code until the sum = no1 + no2 line is highlighted.

Change the value of no1 to 20 and of no2 to 15, then check how control flows
through the if structure.

In the next run of DebugTest, a second breakpoint
has been added at the line loop. When we run the
program in debug mode, it halts at the �rst
breakpoint (just as before).

 Although we can use single-stepping, we also
have the option to press the continue button
which will cause the program to continue
execution until another breakpoint is encountered.

Original
break
point

Execution
stops
here

New
break
point

Execution
stops
here

OR

Activity 6.28

Add a second breakpoint to DebugTest at loop.

Run the program and, when it halts at the first breakpoint, press the continue
button and check that the program executes correctly until the second
breakpoint is reached.

In the watches, set the values of no1 and no2 to -6 and -50 and press the
continue button again.

When the program halts again, change the values of no1 and no2 to 20 and 40
respectively, then single step through the program watching how the output and
flow of control are affected.

It’s possible to run a program in Debug mode even
when it contains no breakpoints. Under this setup
we can get a program to pause by pressing the
break button.

The line at which the program has halted will be
highlighted and we are then free to change watch
values, single-step through the code, add break-
points or press continue.

Running in Debug mode

OR Execution
stops
here

218 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

Auto Updating

If a program loop updates a value that is being watched then we can select the
debugger’s auto update check box to observe the watched variable’s value change as
the loop iterates. For example, if the main loop of our program is coded as

do
 no1 = Random2(-10,10)
 no2 = Random2(-20,15)
 Print(no1)
 Print(no2)
 Sync()
loop

and we have placed a watch on variables no1 and no2, then run the program without
any breakpoints, we may see initial values in the watches but these won’t update as
new random values are generated (but we can see the new values appear in the app’s
window).

If we now select the auto update checkbox, we’ll suddenly see the watched variables
change value as new random values are generated.

Below the checkbox is a set of radio buttons where we can apparently select the
frame rate for our app. However, this is not the case. These buttons determine how
often the watch values are updated. For example, if we select 1fps, then the values
are updated once every second but the program continues to execute at its original
speed and to generate new values at that faster rate. So, in effect, our watches display
a snapshot of the values being used during one iteration – the values used on other
iterations within our one-second time interval are unknown.

Activity 6.29

Remove all breakpoints from DebugTest then run it in debug mode pressing the
break button and then try single-stepping through the code.

If we select the Auto Update checkbox, watched
variables will have their values automatically
updated.

The fps setting determines how often the watched
values are updated, not the speed at which the
app runs

Check to have
watched values

update automatically

Sets the watch
update speed

only

Activity 6.30

Load DebugTest2, add watches for no1 and no2 then run the program in debug
mode.
Check out the effect of Auto Update and the fps radio buttons.

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 219

The Call Stack

Another part of the debugger is the Call Stack. This area of the Debug page is used
to tell us which module and code line is about to be executed. In this context, the main
program is identified as module <Main>. The frames below show the contents of the
Call Stack area when we run DebugTest.

You may have noticed that the Call Stack is implemented as a dropdown list and
we’ll see why that is when we cover more aspects of the debugger in Chapter 9.

Log()

The Log() command acts rather like Print() but outputs to the Message page rather
than the app window. The command is only active when running in debug mode; if
running in normal mode, the command is ignored. The statement has the format
shown in FIG-6.19.

where:

message is a string containing the text to be displayed on the
Message page.

For example, rather than single-step through a long program, we might wish to output
messages to the Message page using statements such as

 if no < 0
 Print(“Negative”)
 else
 Log(“no < 0 is false”)
 ...

See the end of Chapter 9 for further details on the debugger.

When we run a program in debug mode, the Call
Stack shows the line number and section of the
program <Main> that is about to be executed.

As we single-step through the code, we’ll see the
entry under Call Stack change.

Line to be executed Line to be executed

Activity 6.31

Run DebugTest again in debug mode and pay attention to the Call Stack.

FIG-6.19

Log()

()Log message

220 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

Code Properties
When running in Debug mode AGK Studio offers another feature which allows us to
adjust the value of global values as a program is running. This feature is known as
code properties.

We will demonstrate the basic features of this feature using an app called Asterisks
whose core code is

global num = 4
do
 for c = 1 to num
 PrintC(“*”)
 next c
 Print(“”)
 Sync()
loop

which displays a line of asterisks num characters in length.

When we activate the code properties feature a new tabbed page will appear in the
Help window. The new page’s title will be Properties.

Before using this feature we must ensure that
Enable Code Properties is checked in the Preferences
dialog’s Editor page (Edit|Preferences).

Also the Properties dialog Build Options page
must have both On Debug options selected.

To activate the Code Properties feature we must
add a special type comment to our code.

//[IDEGUIADD],

A comment line of this
form activates the Code

 Properties feature

Line added
to code

Enable Code Properties
On Debug Start, Bring Debug to Front
On Debug Try to Bring App to Front

This minimal comment is enough to activate the
Code Properties page in the Help window.

New Code
Properties page

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 221

It is also possible to use //[IDEGUIADD] with float or string as the second element
of the line. For example,

global txt as string //[IDEGUIADD],string,txt
global weight as float //[IDEGUIADD],float,weight

We can extend our new comment line in order to
specify what type of element we wish to have
appear on the Properties page. Normally, we
would start with a header.

...or “separator” (in which case the third element is
empty).

There are always three comma-separated elements
in one of these special comment lines. The second
element, as well as being “header” can be
“message”...

The main purpose of Code Properties is to change a
 variable’s contents while the program is running
(in Debug mode). To do this the variable must be
global and the //[IDEGUIADD] comment must be
on the same line as the variable’s declaration.

The value of the variable is then displayed on the
Code Properties page. The value can be changed
by clicking on the - and + buttons or typing
directly into the edit box. Any changes made are
re�ected in the source code.

As the code changes, so the output produced
also changes.

Variable’s typeVariable must
be global

Text to appear
on the Code

Properties page

Changes show
up in the code

222 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

Further options available using //[IDEGUIADD] are covered at the end of Chapter 13.

Summary
The Debugger

■ The debugger is designed to help locate errors in a program.

■ A breakpoint is a line in the program where execution will automatically halt
when running in debug mode.

■ A breakpoint is shown in the code listing as a red circle to the left of the line of
code.

■ Any number of breakpoints can be added to a program.

■ A breakpoint can be removed by clicking on its red circle.

■ The IDE must be the active window (not the app we’re testing) when stepping
through the program.

■ When single-stepping, the highlighted line is the one about to be executed on
the next step – not the line that has just been executed.

■ A watch allows us to see and change the contents of a program variable.

■ Selecting the Auto Update checkbox will cause the watched variables to
automatically reflect any change of value when running the app.

■ The selected fps radio button determines how often per second watched values
are updated when Auto Update has been selected.

■ The Call Stack shows us which statement will be executed next.

■ Use Log() to output text to the Message page when running in debug mode.

Code Properties
■ Use the //[IDEGUIADD] command to create a Code Properties page where

the value of global variables can be manipulated before or during execution
(Debug mode only).

■ When using the //[IDEGUIADD] command the following Preferences options
must be selected:
 Preferences>Editor>Enable Code Properties
 Preferences>Build Options>On Debug Start, Bring Debugger to
 Front
 Preferences>Build Options>On Debug, Try to Bring App to Front

■ To view the value of a global variable the //[IDEGUIADD] command must be
on the same line of code as the global variable’s declaration.

■ The //[IDEGUIADD] command has the format //[IDEGUIADD],type,text.

Activity 6.32

Load the project Asterisks (AGK/Resources/Ch06) and set up the Code
Properties page by displaying and adjusting the contents of the integer variable
num.

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 223

■ The type argument can be one of the following:
 heading
 message
 separator
 integer
 float
 string
 (for other values, see Chapter 13)

224 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

Solutions
Activity 6.1

Modified code for Guess:
// Project: Guess
// Created: 2015-01-011

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window properties ***
SetWindowTitle(“Guess”)
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Generate number (0 to 9) ***
number = Random(0,9)

//*** Display user prompt ***
Print(“Guess what my number was (0 to 9) : “)
Sync()
Sleep(2000)

//*** Get a guess in range 0 to 9 ***
guess = GetButtonEntry()
while guess < 0 or guess > 9
 Print(“Your guess must be between 0 and 9”)
 Print(“Enter your guess again(0 - 9) : “)
 Sync()
 Sleep(2000)
 guess = GetButtonEntry()
endwhile

//*** Calculate difference ***
diff = number - guess

do
 //*** Respond to guess ***
 if diff > 2
 Print(“Your guess is too low”)
 else
 if diff > 0
 Print(“Your guess is slightly too low”)
 else
 if diff = 0
 Print(“Correct”)
 else
 if diff >= -2
 Print(“Your guess is slightly too high”)
 else
 Print(“Your guess is too high”)
 endif
 endif
 endif
 endif

 //*** Display number generated ***
 PrintC(“My number was : “)
 Print(number)
 PrintC(“Your guess was : “)
 Print(guess)
 Sync()
loop

Activity 6.2
Code for DiceCount:

// Project: DiceCount
// Created: 2015-01-12

//*** Set window properties ***
SetWindowTitle(“Dice Count”)
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Set count to zero ***
count = 0

//*** Throw dice ***
dice1 = Random(1,6)
dice2 = Random(1,6)

//*** display dice values ***
PrintC(dice1)
PrintC(“ “)
Print(dice2)
Sync()
Sleep(500)

//*** Keep going while total is less than 9 ***
while dice1 + dice2 <= 8
 //*** add 1 to count ***
 count = count + 1
 //*** Throw dice ***
 dice1 = Random(1,6)
 dice2 = Random(1,6)
 //*** Display dice values ***
 PrintC(dice1)
 PrintC(“ “)
 Print(dice2)
 Sync()
 Sleep(500)
endwhile

//*** Display final result ***
do
 PrintC(“You had a run of “)
 PrintC(count)
 Print(“ throws”)
 Sync()
loop

Activity 6.3
Code for Total:

// Project: Total
// Created: 2015-01-12

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window properties ***
SetWindowTitle(“Total”)
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Set up buttons ***
SetUpButtons()

//*** Set total to zero ***
total = 0

//*** Keep going until zero entered ***
repeat
 //*** Get value ***
 no = GetButtonEntry()
 //*** Add value to total ***
 total = total + no
until no = 0

do
 //*** Display total ***
 PrintC(“Total = “)
 Print(total)
 Sync()
loop

Activity 6.4
Modified code for Guess (remember to indent all the code
between the repeat and until terms):

// Project: Guess
// Created: 2015-01-011

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window properties ***
SetWindowTitle(“Guess”)
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 225

//*** Display the buttons ***
SetUpButtons()

//*** Generate number (0 to 9) ***
number = Random(0,9)

//*** Display user prompt ***
Print(“Guess what my number is (0 to 9) : “)
Sync()
Sleep(2000)

//*** Keep guessing until correct ***
repeat
 //*** Get a guess in range 0 to 9 ***
 guess = GetButtonEntry()
 while guess < 0 or guess > 9
 Print(“Your guess must be between 0 and 9”)
 Print(“Enter your guess again(0 - 9) : “)
 Sync()
 Sleep(2000)
 guess = GetButtonEntry()
 endwhile
 //*** Calculate difference ***
 diff = number - guess
 //*** Respond to guess ***
 if diff > 2
 Print(“Your guess is too low”)
 else
 if diff > 0
 Print(“Your guess is slightly too low”)
 else
 if diff = 0
 Print(“Correct”)
 else
 if diff >= -2
 Print(“Your guess is slightly too high”)
 else
 Print(“Your guess is too high”)
 endif
 endif
 endif
 endif
 Sync()
 Sleep(2000)
until guess = number

do
 //*** Display number generated ***
 PrintC(“My number was : “)
 Print(number)
 Sync()
loop

Notice that the nested if structure has been moved outside
the do...loop and that the final display no longer prints the
guess value (since this must be the same as number at this
point).

Activity 6.5
for j = 1 to 10

Activity 6.6
This code would display the values 1 to 10.

Activity 6.7
Version of Tables for the 12 times table:

// Project: Tables
// Created: 2015-01-22

//*** Set window title and size ***
SetWindowTitle(“Tables”)
SetWindowSize(1024,720,0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

do
 for c = 12 to 144 step 12
 Print(c)
 next c
 Sync()
loop

Activity 6.8
Modified version of Tables:

// Project: Tables
// Created: 2015-01-22

//*** Set window title and size ***
SetWindowTitle(“Tables”)
SetWindowSize(1024,720,0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

do
 for c = 144 to 12 step -12
 Print(c)
 next c
 Sync()
loop

Activity 6.9
Modified code for UserLoop (lower limit):

// Project: UserLoop
// Created: 2015-01-21

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window title and size ***
SetWindowTitle(“User Loop”)
SetWindowSize(720,1024,0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Get lower limit ***
Print(“Enter for loop lower limit : “)
Sync()
Sleep(2000)
//*** Get lower limit ***
low = GetButtonEntry()

//*** Get upper limit ***
Print(“Enter for loop upper limit : “)
Sync()
Sleep(2000)
high = GetButtonEntry()

//*** Display values low to high ***
do
 for c = low to high
 Print(c)
 next c
 Sync()
loop

Modified code for UserLoop (step size):
// Project: UserLoop
// Created: 2015-01-21

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window title and size ***
SetWindowTitle(“User Loop”)
SetWindowSize(720,1024,0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Get lower limit ***
Print(“Enter for loop lower limit : “)
Sync()
Sleep(2000)
//*** Get lower limit ***
low = GetButtonEntry()

//*** Get upper limit ***

226 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

Print(“Enter for loop upper limit : “)
Sync()
Sleep(2000)
high = GetButtonEntry()

//*** Get step size ***
Print(“Enter for loop step size : “)
Sync()
Sleep(2000)
increment = GetButtonEntry()

//*** Display values 1 to high ***
do
 for c = low to high step increment
 Print(c)
 next c
 Sync()
loop

Activity 6.10
Code for ForReal:

// Project: ForReal
// Created: 2015-01-22

//*** Set window title and size ***
SetWindowTitle(“For Real”)
SetWindowSize(720,1024,0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

do
 for c# = 1.0 to 2.0 step 0.1
 Print(c#)
 next c#
 Sync()
loop

Notice that the values displayed are 1.0 to 1.9. 2.0 does not
appear.

Activity 6.11
Modified version of ForReal:

// Project: ForReal
// Created: 2015-01-22

//*** Set window title and size ***
SetWindowTitle(“For Real”)
SetWindowSize(720,1024,0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

do
 for c# = 1.0 to 2.0 step 0.25
 Print(c#)
 next c#
 Sync()
loop

The display now runs from 1.0 to 2.0 (in steps of 0.25).

Activity 6.12
Code for InTotal:

// Project: InTotal
// Created: 2015-01-22

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window title and size ***
SetWindowTitle(“In Total”)
SetWindowSize(720,1024,0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Set total to zero ***
total = 0

//*** Read in and total six values ***
for c = 1 to 6
 PrintC(“Enter number “)
 PrintC(c)
 Print(“ : “)
 Sync()
 Sleep(1500)
 num = GetButtonEntry()
 inc total, num
next c

//*** Display total ***
do
 PrintC(“Total is “)
 Print(total)
 Sync()
loop

Activity 6.13
Code for Shades:

// Project: Shades
// Created: 2015-01-22

//*** Set window title and size ***
SetWindowTitle(“Shades”)
SetWindowSize(720,1024,0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Cyscle through all shades of red ***
do
 for red = 0 to 255
 SetClearColor(red,0,0)
 Sync()
 Sleep(25)
 next red

loop

Activity 6.14
Code for SmallestNumber:

// Project: SmallestNumber
// Created: 2015-01-22

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window properties ***
SetWindowTitle(“Smallest Number”)
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Get number ***
Print(“Enter number “)
Sync()
Sleep(1500)
no = GetButtonEntry()

//*** Set smallest to first number ***
smallest = no

//*** For 4 times do ***
for c = 1 to 4
 //*** Get next number ***
 Print(“Enter number “)
 Sync()
 Sleep(1500)
 no = GetButtonEntry()
 //*** If number smaller, record it ***
 if no < smallest
 smallest = no
 endif
next c

do
 //*** Display smallest value ***
 PrintC(“Smallest value entered was “)
 Print(smallest)

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 227

 Sync()
loop

Modified version of SmallestNumber:
// Project: SmallestNumber
// Created: 2015-01-22

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window properties ***
SetWindowTitle(“Largest Number”)
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Get number ***
Print(“Enter number “)
Sync()
Sleep(1500)
no = GetButtonEntry()

//*** Set largest to first number ***
largest = no

//*** For 4 times do ***
for c = 1 to 4
 //*** Get next number ***
 Print(“Enter number “)
 Sync()
 Sleep(1500)
 no = GetButtonEntry()
 //*** If number larger, record it ***
 if no > largest
 largest = no
 endif
next c

do
 //*** Display largest value ***
 PrintC(“Largest value entered was “)
 Print(largest)
 Sync()
loop

Of course, the project name is really no longer appropriate!

Activity 6.15
Modified version of SumDice:

// Project: SumDice
// Created: 2015-01-21

//*** Set window properties ***
SetWindowTitle(“Sum Dice”)
SetWindowSize(1024,768,0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Set total to zero ***
total = 0
//*** for 5 times do ***
for c = 1 to 5
 //*** Display number of rolls so far ***
 PrintC(“Roll number “)
 Print(c)
 Sync()
 Sleep(1500)
 //*** Throw both dice ***
 dice1 = Random(1,6)
 dice2 = Random(1,6)
 //*** Display throw number and dice values ***
 PrintC(“dice 1 : “)
 PrintC(dice1)
 PrintC(“ dice 2 : “)
 Print(dice2)
 Sync()
 Sleep(4000)
 //*** if either dice is a 1 then quit loop ***
 if dice1 = 1 or dice2 = 1
 exit
 endif

 //*** Add dice throws to total ***
 total = total + dice1 + dice2
next c

do
 //*** Display final score ***
 PrintC(“Your final score was : “)
 Print(total)
 PrintC(“After “)
 PrintC(c)
 Print(“ throws”)
 Sync()
loop

When no 1 is thrown, the program displays the message After
6 throws. However, only five throws have been made.

Activity 6.16
Modified version of SumDice:

// Project: SumDice
// Created: 2015-01-21

//*** Set window properties ***
SetWindowTitle(“Sum Dice”)
SetWindowSize(1024,768,0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Set total to zero ***
total = 0
//*** for 5 times do ***
for c = 1 to 5
 //*** Display number of rolls so far ***
 PrintC(“Roll number “)
 Print(c)
 Sync()
 Sleep(1500)
 //*** Throw both dice ***
 dice1 = Random(1,6)
 dice2 = Random(1,6)
 //*** Display throw number and dice values ***
 PrintC(“dice 1 : “)
 PrintC(dice1)
 PrintC(“ dice 2 : “)
 Print(dice2)
 Sync()
 Sleep(4000)
 //*** if either dice is a 1 then quit loop ***
 if dice1 = 1 or dice2 = 1
 exit
 endif
 //*** Add dice throws to total ***
 total = total + dice1 + dice2
next c

//*** Adjust c if no 1s thrown ***
if c = 6
 dec c
endif

do
 //*** Display final score ***
 PrintC(“Your final score was : “)
 Print(total)
 PrintC(“After “)
 PrintC(c)
 Print(“ throws”)
 Sync()
loop

Activity 6.17
Modified code for Guess:

// Project: Guess
// Created: 2015-01-011

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window properties ***
SetWindowTitle(“Guess”)
SetWindowSize(768, 1024, 0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)

228 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Generate number (1 to 100) ***
number = Random(1,100)

//*** Display user prompt ***
Print(“Guess what my number is (1 to 100) : “)
Sync()
Sleep(2000)

//*** Allow up to seven guesses ***
for c = 1 to 7
 //*** Get a guess in range 1 to 100 ***
 guess = GetButtonEntry()
 while guess < 1 or guess > 100
 Print(“Your guess must be between 1 and 100”)
 Print(“Enter your guess again(1 - 100) : “)
 Sync()
 Sleep(2000)
 guess = GetButtonEntry()
 endwhile
 //*** Calculate difference ***
 diff = number - guess
 //*** Respond to guess ***
 if diff > 2
 Print(“Your guess is too low”)
 else
 if diff > 0
 Print(“Your guess is slightly too low”)
 else
 if diff = 0
 Print(“Correct”)
 exit
 else
 if diff >= -2
 Print(“Your guess is slightly too high”)
 else
 Print(“Your guess is too high”)
 endif
 endif
 endif
 endif
 Sync()
 Sleep(2000)
next c

do
 //*** Display number generated and number of
 guesses ***
 PrintC(“My number was : “)
 Print(number)
 if c = 8
 Print(“You failed to guess the number “)
 else
 PrintC(“It took you “)
 PrintC(c)
 Print(“ guesses”)
 endif
 Sync()
loop

Activity 6.18
No solution required.

Activity 6.19
When an exit command is used, no output appears. This is
because the first value of c (1) is not even and so the exit
command is executed and looping terminated.

Activity 6.20
Code for AverageScore:

// Project: AverageScore
// Created: 2015-01-22

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window title and size ***
SetWindowTitle(“Average Score”)

SetWindowSize(720,1024,0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Set total to zero ***
total = 0

//*** for 6 times do ***
for c = 1 to 6
 //*** Read score ***
 PrintC(“Enter score “)
 Print(c)
 Sync()
 Sleep(1500)
 score = GetButtonEntry()
 //*** while score is invalid do ***
 while score < 0 or score > 100
 //*** Display error message ***
 Print(“Score must be between 0 to 100”)
 Sync()
 Sleep(1500)
 //*** Get score ***
 PrintC(“Enter score “)
 Print(c)
 Sync()
 Sleep(1500)
 score = GetButtonEntry()
 endwhile
 //*** Add score to total ***
 inc total, score
next c

//*** Calculate average score ***
average# = total/6.0

//*** display average score ***
do
 PrintC(“Average score is “)
 Print(average#)
 Sync()

loop

Activity 6.21
No solution required.

Activity 6.22
The output would be:

 -2 0
 -2 1
 -2 2
 -2 3
 -1 0
 -1 1
 -1 2
 -1 3
 0 0
 0 1
 0 2
 0 3
 1 0
 1 1
 1 2
 1 3

On the computer screen, all output would occur on the same
line with a slight display between each set of values.

Activity 6.23
Code for NestedJump:

// Project: NestedJump
// Created: 2015-02-06
//*** Set window size and title ***
SetWindowSize(1024, 768, 0)
SetWindowTitle(“Nested Jump”)

Hands On AppGameKit Studio Volume 1: Iteration and Debugging 229

SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

do
 for tens = 0 to 2 //Outer loop
 PrintC(tens)
 for units = 0 to 9 //Inner loop
 if units = 5
 exit
 endif
 Print(units)
 next units
 next tens
 Sync()
loop

The program will create the following display:

00
1
2
3
4
11
2
3
4
21
2
3
4

As soon as the inner loop (units) reaches 5, the loop exits, so
the values 5 to 9 are never displayed.

When continue is used in place of exit, all combinations
from 00 to 29 are displayed except for 05, 15 and 25.

Activity 6.24
The code contains a while loop so we need to create three
sets of test data to allow zero, one and more than one
iteration of the loop.

Possible test values are:
 num Expected Results
 (for average)

Test 1 0 0
Test 2 8,0 8
Test 3 12,7,0 9.5

Code for AverageTest:
// Project: AverageTest
// Created: 2015-01-22

//*** Other source file used by program ***
#include “Buttons.agc”

//*** Set window title and size ***
SetWindowTitle(“Average Test”)
SetWindowSize(720,1024,0)
SetDisplayAspect(768/1024.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Display the buttons ***
SetUpButtons()

//*** Set total to zero ***
total = 0
//*** Set count to zero ***
count = 0

//*** Read number ***
Print(“Enter number (0 to stop)”)
Sync()
Sleep(1500)
num = GetButtonEntry()

//*** while num not zero do ***
while num <> 0
 //*** Add num to total ***
 inc total, num
 //*** Increment count ***
 inc count
 //*** Get next number ***
 Print(“Enter number (0 to stop)”)
 Sync()
 Sleep(1500)
 num = GetButtonEntry()
endwhile

//*** Calculate average ***
average# = total / count

do
 PrintC(“Average is “)
 Print(average#)
 Sync()
loop

When we run the program with the test data, it turns out that
the first run halts the program!

The line
 average# = total/count

causes the program to crash. This is because count would
have the value zero and hence the calculation would cause a
division by zero error.

We can solve the problem by changing the code to
 if count = 0
 average# = 0
 else
 average# = total / count
 endif

The third test given here would also cause a problem – giving
a result of 9 rather than 9.5.

Since total and count are both integer variables, we get an
integer result when calculating average#.

To solve this we need to use a float variable for either total or
count. One possible solution is to write

count# = count
average# = total/count#

Activity 6.25
No solution required.

Activity 6.26
No solution required.

Activity 6.27
No solution required.

Activity 6.28
No solution required.

Activity 6.29
No solution required.

Activity 6.30
No solution required.

Activity 6.31
No solution required.

230 Hands On AppGameKit Studio Volume 1: Iteration and Debugging

Activity 6.32
Before adding the //[IDEGUIADD] command, make sure that
Preferences>Editor>Enable Code Properties checkbox is
selected and Preference>Build Options>On Debug Start,
Bring Debugger to Front and On Debug, Try to Bring App to
Front are both selected.

Change the line

global num = 4

to

global num = 4 //[IDEGUIADD],integer,num

This should create the Code Properties page to the right of
the main code window and display the value of num.

When the program is run in Debug mode changing the value
of num from within the Code Properties page will adjust the
program’s source code (in the line where num is declared)
and adjust the number of asterisks shown in the output.

Hands On AppGameKit Studio Volume 1: A First Look at Resources 231

A First Look at Resources

In this Chapter:

T The Screen Coordinates System

T Drawing Commands

T Introducing Images

T Introducing Sprites

T Introducing User Interaction

T Introducing Text

232 Hands On AppGameKit Studio Volume 1: A First Look at Resources

Drawing Functions

Introduction
So far, all we’ve done in the way of output is to create a little text. Not very eye-
catching! But in this chapter we’ll start to use some of those functions that allow us
to draw basic shapes, display images, and create movement as well as have the user
interact with those elements. But before we get started on those topics, we need to
take a closer look at the screen and how we specify positions on that screen.

The Screen Coordinate System
If we want to draw shapes on the screen, then we need to specify where on the screen
these elements are to appear. To do that we must take a closer look at the screen
coordinate system we last covered in Chapter 3.

If you are unfamiliar with the maths behind a 2D coordinate system, you might like
to read the 10 Minute Maths: Cartesian Coordinates booklet available from Amazon.

For those of us used only to maths coordinate systems, what’s strange about computer
screen coordinates is that the origin (point (0,0)) is at the top left corner of the screen
and that the positive direction of the y-axis points downward (see FIG-7.1).

Exactly how we specify a point on the screen depends on the coordinate system we
are using in our AGK program,

If we are using the percentage system (as we do throughout this book), then the
x-coordinate of any point on the screen lies between 0 and 100, with the y-coordinate
also lying in the same range (see FIG-7.2).

Note that, unless we have a square screen (or window), this means that the 1% along

�
If you are running the
app within a window,
then its the top left of
that window that is
taken as the origin.

FIG-7.1

Screen Axes

Origin
x-axis (positive direction)

Screen
(or window)

FIG-7.2

The Percentage System

Screen
(or window)

(0, 0) (100, 0)

(0, 100) (100,100)

Hands On AppGameKit Studio Volume 1: A First Look at Resources 233

the x-axis is not the same physical distance as 1% along the y-axis.

For example, let’s say we are running our program in a window which is 1024 pixels
wide by 768 pixels high (the same as the original iPad in landscape mode), then 1%
in the x direction would cover 10.24 pixels while 1% in the y direction would only
be 7.68 pixels (see FIG-7.3).

And, since we can’t change part of a pixel, the screen handler will round these figures
to the nearest pixel meaning 1% in the x direction becomes10 pixels while 1% in the
y direction is 8 pixels.

If we are employing the virtual pixels setup (using SetVirtualResolution() – see
Chapter 3) the x and y distances will be specified in pixels.

For example, if near the start of our program we have written
SetVirtualResolution(1024, 768)

then our on-screen x-axis would use measurements 0 to 1023 and the y-axis 0 to 767
(see FIG-7.4).

If we have set the virtual resolution so that it exactly matches the physical resolution
of our screen or window, then we have the ideal situation where one virtual pixel is
equivalent to one physical pixel. And if we intend to run our app on a single device,
this is the way to go since we will have absolute precision when placing elements on
the screen.

FIG-7.3

Percentage and Pixels

1% (x direction)

1% (y direction)

Screen Segment
(showing individual pixels)

FIG-7.4

The Virtual Pixels
System

Screen
(or window)

(0, 0) (1023, 0)

(0, 767) (1023, 767)

234 Hands On AppGameKit Studio Volume 1: A First Look at Resources

However, if we are designing an app which we expect to run on many different
devices, then our virtual resolution is not going to be an exact match in all cases. For
example, if we have set a virtual resolution of 1024 by 768 and then run the app on
an iPad Air 2 with its screen resolution of 2048 by 1536, then 1 virtual pixel will be
equivalent to two physical pixels.

Determining the Window and Screen Sizes
Screen Size

We can find out the size of our screen (in pixels) using the following two commands.

GetMaxDeviceWidth()

The width of the screen on which the AGK app is currently running can be found
using the GetMaxDeviceWidth() function which has the format shown in FIG-7.5.

GetMaxDeviceHeight()

The height of the screen on which the AGK app is currently running can be found
using the GetMaxDeviceHeight() function which has the format shown in FIG-7.6.

The program in FIG-7.7 displays the size of the current hardware’s screen.

FIG-7.5

GetMaxDeviceWidth() ()GetMaxDeviceWidthinteger

FIG-7.6

GetMaxDeviceHeight()

()GetMaxDeviceHeightinteger

FIG-7.7

Finding the Screen’s
Dimensions

// Project: ScreenSize
// Created: 2015-01-23

//*** Window title and size ***
SetWindowTitle(“Screen Size”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Get screen dimensions ***
screenwidth = GetMaxDeviceWidth()
screenheight = GetMaxDeviceHeight()

do
 //*** Display the screen’s dimensions ***
 PrintC(“Screen width: “)
 PrintC(screenwidth)
 PrintC(“ pixels Screen height: “)
 PrintC(screenheight)
 Print(“ pixels”)
 Sync()
loop

Hands On AppGameKit Studio Volume 1: A First Look at Resources 235

Window Size

When running our app within a window on a desktop machine, we can discover the
window’s dimensions using the following functions:

GetDeviceWidth()

This function returns the window’s width in pixels and has the format shown in FIG-
7.8.

GetDeviceHeight()

This function returns the window’s height in pixels and has the format shown in FIG-
7.9.

When these two commands are executed on a mobile device, the full screen
dimensions are returned. That is to say, the functions return the same results as
GetMaxDeviceWidth() and GetMaxDeviceHeight().

Calculating the Percentage to Pixel Ratio
Earlier in this chapter we saw that, when using the percentage system, a 1%
measurement in the x direction can cover a different number of pixels than a 1%
measurement in the y direction.

To determine exactly how many pixels a distance of 1% covers in each direction we
can use the following code:

one_percent_x# = GetDeviceWidth()/100.0
one_percent_y# = GetDeviceHeight()/100.0

Activity 7.1

Start a new project called ScreenSize and implement and run the code given in
FIG-7.7.

Using AGK Player, run the app on another device and check the dimensions
displayed there.

Do the screen dimensions assume portrait mode or landscape mode?

Do the values displayed change when the device is moved to a new orientation?

FIG-7.8

GetDeviceWidth()

()GetDeviceWidthinteger

FIG-7.9

GetDeviceHeight()

()GetDeviceHeightinteger

Activity 7.2

Modify ScreenSize so that it displays both the screen and window dimensions.

Test the app on a desktop and mobile device.

236 Hands On AppGameKit Studio Volume 1: A First Look at Resources

Alternatively, to discover what percentage a single pixel represents, we can use
xpixel# = 100.0/GetDeviceWidth()
ypixel# = 100.0/GetDeviceHeight()

Remember to use 100.0 and not 100 in these calculations otherwise the program will
perform integer division giving incorrect results.

Defining Colour
MakeColor()

Although we often define a colour by supplying three separate integer values for its
red, green and blue components, it is also possible to set up a single integer which
contains all three colour values.

This is achieved using the MakeColor() statement whose syntax is shown in FIG-7.10.

where:

 red is an integer value (0 to 255) giving the value of the red component
of the desired colour.

 green is an integer value (0 to 255) giving the value of the green
component of the desired colour.

 blue is an integer value (0 to 255) giving the value of the blue
component of the desired colour.

The value returned by the statement will normally be stored in an integer variable for
use in one of the other drawing statements.

We could create an integer value representing yellow with the line:
yellow = MakeColor(255,255,0)

Or we could create a random colour using:
unknown_colour =
MakeColor(Random(0,255),Random(0,255),Random(0,255))

GetColorRed(), GetColorGreen() and GetColorBlue()

We can discover the red, green and blue settings within a colour value set up by a
previous call to MakeColor() using the statements GetColorRed(), GetColorGreen()
and GetColorBlue() (see FIG-7.11).

Activity 7.3

Start a new project called PercentPixel and create a program to display the
pixel-to-percent and percent-to-pixel values.

Run the program on your desktop (with a window size of your choice) then run
it again on a tablet or smartphone (by making use of AGK Player 2).

FIG-7.10

MakeColor()

()MakeColor red bluegreen alphainteger

Hands On AppGameKit Studio Volume 1: A First Look at Resources 237

where:

 col is an integer value returned by a previous call to MakeColor().

The value returned by these statements is the integer value of the colour component
and will lie in the range 0 to 255. For example, the code

colour = MakeColor(Random(0,255),Random(0,255),Random(0,255))
greenvalue = GetColorGreen(colour)

assigns the value of the green component within the variable colour to the variable
greenvalue.

Drawing
AGK supplies three functions which allow us to draw basic shapes directly onto the
screen. All of these draw functions have a property similar to the Print() statement
in that they must be executed for each frame in order to remain visible.

DrawLine()

The DrawLine() function allows us to draw a straight line between two points.

The DrawLine() command can be employed in two different ways depending on
which of the statement’s formats is used. It can either draw a line of a single, specified
colour or it can draw a line which gradually changes colour from one end of the line
to the other. The formats of this statement are shown in FIG-7.12.

where:

 x1, y1 are real numbers giving the coordinates of the starting point of
the line.

 x2, y2 are real numbers giving the coordinates of the finishing point of
the line.

 r, g, b (format 1) are integer values giving the red, green and blue
components of the line’s colour.

 col1, col2 (format 2) are integer values for the colours at the start and end
points of the line respectively. These colours will have been
previously set up using MakeColor().

FIG-7.11

GetColorRed()
GetColorGreen()
GetColorBlue()

colinteger GetColorAlpha

colinteger GetColorBlue

colinteger GetColorGreen

colinteger GetColorRed

FIG-7.12

DrawLine() ()

)

DrawLine x1 y1 r g bx2 y2

(DrawLine x1 y1 col1 col2x2 y2

Format 1

Format 2

238 Hands On AppGameKit Studio Volume 1: A First Look at Resources

The following program draws a single yellow-coloured line from the top-left corner
to the bottom right (see FIG-7.13).

DrawBox()

The second drawing command available is DrawBox(). This draws a rectangle when
supplied with the coordinates of the top-right and bottom-left corners.

The more unusual feature of the command is that it is possible to define a colour for
each of the four corners of the rectangle which merge into each other in the displayed
box. The box can also be solid (filled) or border-only (unfilled).

The format for the command is given in FIG-7.14.

where:

 x1, y1 are real numbers giving the coordinates of the top-left corner of
the required rectangle.

 x2, y2 are real numbers giving the coordinates of the bottom-right
corner.

 col1, col2,col3, col4
are integer values giving the colours to be used in the four corners
of the rectangle.

FIG-7.13

Using DrawLine()
(version 1)

// Project: TestDrawLine
// Created: 2015-01-14

//*** Window title and size ***
SetWindowTitle(“Test DrawLine”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

do
 //*** Draw a line from top-left to bottom-right ***
 DrawLine(0,0,100,100,255,255,0)
 Sync()
loop

Activity 7.4

Start a new project called TestDrawLine and implement and run the code given
in FIG-7.13.

Modify the program to make use of two colour values, making the line change
from red at the top left corner to yellow at the bottom right.

FIG-7.14 DrawBox()

)(DrawBox x1 y1 col1 col2x2 y2 col3 col4 fill

Hands On AppGameKit Studio Volume 1: A First Look at Resources 239

 fill is an integer value (0 or 1) which controls how the rectangle is
drawn. 0: outline; 1: solid.

The colours are used to fill the box or, in the case of an outlined box, to colour the
border lines (see FIG-7.15).

The program in FIG-7.16 makes use of the DrawBox() statement to draw a filled box.

FIG-7.15

A Box

FIG-7.16

Drawing a Box

// Project: Rectangles
// Created: 2015-01-14

//*** Window title and size ***
SetWindowTitle(“Rectangles”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Create colour values ***
red = MakeColor(255,0,0)
green = MakeColor(0,255,0)
blue = MakeColor(0,0,255)
yellow = MakeColor(255,255,0)

do
 //*** Draw rectangle ***
 DrawBox(10,10,90,90,red,green,blue,yellow,1)
 Sync()
loop

Activity 7.5

Start a project called Rectangles implementing the code shown in FIG-7.16.

Run the program and observe the effect created.

Modify the program so that the four colours are selected randomly on each
refresh of the screen.

Add a Sleep() statement to cause each colour combination to remain on screen
for 500 milliseconds.

Run the program and observe the effect of the changing colours.

Modify the program again so that only the outline of the rectangle is drawn.

240 Hands On AppGameKit Studio Volume 1: A First Look at Resources

DrawEllipse()

We can think of an ellipse as a circle which has been stretched in one direction. A
typical ellipse and its main properties are shown in FIG-7.17.

To draw an ellipse within AGK we can use the DrawEllipse() statement (see FIG-
7.18). The ellipse can be solid or in outline only with the specified two colours merging
over the area of the ellipse.

where:

x,y are real numbers giving the coordinates of the centre
point of the ellipse.

radx is a real number giving the length of the x radius.

rady is a real number giving the length of the y radius.

col1, col2 are integer values giving the fill (or outline) colours for
the ellipse.

fill is an integer value (0 or 1) which controls how the ellipse
is drawn. 0: outline; 1: solid.

FIG-7.17

Characteristics of an
Ellipse

An ellipse looks like a squashed circle. It has a centre, an x-axis (along the
x direction) and a y-axis (along the
y direction).

The vertical distance from the centre to
the edge of the ellipse is its y-radius.

The horizontal distance from the centre
 to the edge of the ellipse is its x-radius.

Centre

y-radius

x-radius

x-axis

y-axis

FIG-7.18 DrawEllipse()

()DrawEllipse x y col1 col2 fillradx rady

Hands On AppGameKit Studio Volume 1: A First Look at Resources 241

In a filled ellipse, col1 defines the colour at the top of the ellipse, col2 the colour at the
bottom of the ellipse with the two gradually merging at the centre. For an outlined
ellipse, the colours are used on the outline at the top (col1) and bottom (col2) parts
of the outline (see FIG-7.19).

The program in FIG-7.20 draws a filled ellipse which changes size and colour
randomly once every second.

Summary
■ Screen coordinates default to a percentage system with width and height each

100% irrespective of the actual window size used.

■ Virtual pixels are an alternative to percentage coordinates and specify a screen
size in virtual pixels which need not match the actual pixel size of the window

FIG-7.19

An Ellipse

FIG-7.20

Drawing an Ellipse

// Project: Ellipses
// Created: 2015-01-15

//*** Set window title and size ***
SetWindowTitle(“Ellipses”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)

//*** Clear the screen ***
ClearScreen()

do
 //*** Draw ellipse ***
 DrawEllipse(50,50,30,10,MakeColor(Random(0,255),Random
 (0,255), Random(0,255)),MakeColor(Random(0,255),Random(0,255),
 Random(0,255)),1)
 Sync()
 Sleep(500)
loop

Activity 7.6

Start a new project called Ellipses which implements the code shown in FIG-
7.20.

Change the program to draw a circle (with an x-radius of 20) instead of an
ellipse.

Test your program.

242 Hands On AppGameKit Studio Volume 1: A First Look at Resources

used.

■ Use GetMaxDeviceWidth() to discover the width of the screen (in pixels) on
which the app is running.

■ Use GetMaxDeviceHeight() to discover the height of the screen (in pixels) on
which the app is running.

■ Use GetDeviceWidth() to discover the width of the window (in pixels) in
which the app is running (desktop only).

■ Use GetDeviceHeight() to discover the height of the window (in pixels) in
which the app is running (desktop only).

■ Use MakeColor() to construct an integer value holding red, green and blue
colour information.

■ Use GetRed(), GetGreen() and GetBlue() to extract the primary colour values
from an integer holding colour information.

■ Use DrawLine() to draw a line between two points. The line may morph from
one colour to another along its length.

■ Use DrawBox() to draw a rectangle between two points.

■ The rectangle may be filled with the four colours defined filling each corner
and merging towards the centre.

■ The rectangle may be created in outline only with the four specified colours
merging along the border.

■ Use DrawEllipse() to draw ellipses and circles.

■ Ellipses can be filled (merging two colours) or outlined.

Hands On AppGameKit Studio Volume 1: A First Look at Resources 243

Images

Introduction
Any additional visual or audio components that we make use of within an AGK
project are known as resources. Typical resources are: images, sounds, music,
sprites, buttons and even text.

Every resource is assigned an integer ID value. No two resources of the same type
may have the same ID. However, resources of different types may share the same ID.
So, it’s okay for an image, say, to have an ID of 1 and a sound resource to also have
an ID of 1.

A resource’s ID can be chosen by the programmer or automatically assigned by the
program itself.

Any media files required by a resource must be copied into the project’s media folder.

Images
Image Formats

The type of image we create using our camera or download from the web is a bitmap
image. A bitmap image is constructed from a series of pixels.

The more pixels an image contains, the more detail it will hold. Therefore, we often
talk about the resolution of an image as being its size in pixels. Many cameras can
easily obtain image resolutions of over 4000 x 3000 pixels.

The other simple way to create a bitmap image is to use a paint package such as
Adobe Photoshop, the free-to-use GIMP, or even the modest Paint program included
with Microsoft Windows.

Many painting packages can resize images. This allows us to shrink or expand the
number of pixels in an image. Decreasing the size of an image means that some of
the details that were in the original image will be lost. On the other hand, increasing
an image’s size cannot create detail that was not there in the original and can often
make the enlarged image look fuzzy and slightly out of focus.

Image files can be stored in many formats. Some formats will save an exact copy of
the original image (known as lossless formats) but others lose a small amount of the
original’s detail (lossy formats). This second option doesn’t sound like a great idea,
but the reason such formats are popular – in fact, the most widely used of all – is
because these lossy formats use compression techniques to create much smaller files.
A lossy image can be stored in a file that is only 10% or even 5% of the lossless file
equivalent.

AGK recognises three image file formats. These are: GIF, PNG and JPG.

GIF and PNG are lossless file formats and so should only be used for relatively small
images; perhaps character figures and other visual components of a game.

JPG is a lossy format and is ideal for use with photographs and larger graphics. The
degree of compression used when saving a file in JPG format can be specified. Less

244 Hands On AppGameKit Studio Volume 1: A First Look at Resources

compression means a better quality image but a larger file.

When an image is first created, each individual pixel is represented using four values.
Each of these values normally occupy a single byte. The first three data bytes
represent the intensity of the red, green and blue (collectively termed RGB)
components of the pixel. This allows the intensity of these three primary colours to
be represented by values in the range 0 to 255 (the limits of an unsigned byte's
storage). FIG-7.21 shows both the colour of a pixel as seen on the screen and the
numeric value used to represent that colour.

A lower value in a byte represents a reduced intensity of the corresponding colour.
When all three values are identical a shade of grey is created.

Image Transparency

The fourth byte represents the opacity (commonly known as the alpha value) of the
pixel. A value of 0 makes the pixel invisible; a value of 255 makes it opaque (see
FIG-7.22).

FIG-7.21

Defining Pixel Colour

Pixel
(enlarged)

Data Value

255 0 0(Red)

Red Green Blue

0 255 0(Green)

Red Green Blue

0 0 255(Blue)

Red Green Blue

 255 255(Yellow)

Red Green Blue

0

 0 0(Black)

Red Green Blue

0

 255 255(White)

Red Green Blue

255

FIG-7.22

Alpha Settings

alpha: 255 alpha: 200 alpha: 150 alpha: 100 alpha: 50

Hands On AppGameKit Studio Volume 1: A First Look at Resources 245

Images are always rectangular in shape. So how do we create a game that displays a
football or a spaceship or anything else that isn’t rectangular? All we need to do is
make part of the image transparent. In AGK, there are two methods of achieving
transparent areas within a displayed image.

The first, and preferred, approach to creating transparency is to use the pixel's alpha
value, setting it to 0 to create an invisible pixel (see FIG-7.23).

A second option offered by AGK is to make black areas within an image invisible
when displayed on the screen (see FIG-7.24).

However, there are three things to be careful of when using this option:

■ Only pixels which are truly black (red, green and blue intensities = 0) are made
invisible. Parts of the image which look black to us may not be completely
black and therefore will not appear transparent when displayed.

■ We have to make sure that no part of the image that should remain visible
contains black pixels.

■ A final, and perhaps more subtle problem, is caused by anti-aliasing.

Anti-aliasing is an attempt by image manipulation software to blend the edges of
objects within an image in such a way as to give a smooth transition from one object
to the next. This helps hide the pixelated nature of a digital image and in most cases
improves the image. However, it can cause havoc when trying to create a transparent
background. When anti-aliasing has been used in an image, the transition from visible
area to the black invisible area will have a halo of near-black pixels and this halo will
be all too visible when our image appears on screen (see FIG-7.25).

FIG-7.23

Using Transparency
to Create Non-
Rectangular Shapes

Image
border

Transparent
pixels

(alpha:0)

FIG-7.24

Black Pixel
Transparency

Original Image Screen Display
Black areas

within an image
are...

...transparent
when displayed
on the screen

FIG-7.25

Anti-aliasing Halo of dark

pixels caused by
anti-aliasing

246 Hands On AppGameKit Studio Volume 1: A First Look at Resources

To avoid the halo problem, make sure anti-aliasing is switched off in our paint
software when we are creating an image. Using black pixels to produce transparency
does have its limitations. For example, it does not allow us to create semi-transparent
elements within an image.

When an original image is converted to a file format it may not use 32 bits to store
each pixel's data.

GIF files use only a single byte for each pixel and are therefor limited to 256 colours.
One of these colours can be specified to be transparent. Although of limited colour
palette, GIF files are popular for simple cartoon-like images. A GIF file can also
contain several "frames" (similar in concept to the frames of a film) and so create
animation.

PNG files are normally saved as an exact copy of the original image using four bytes
for each pixel.

 JPG files are compressed versions of the original image with a format that bears no
immediately obvious relationship to that original. However, transparency details are
not stored.

When creating our own images, JPG is best used for photographs; PNG for smaller,
simpler images and where varying levels of transparency is required; GIF for
animated figures.

Images in AGK
LoadImage()

If we want to display one or more images in a game, we need to start by copying the
files containing the images into the AGK project’s media folder. Next, within our
program, we need to issue a command to load each image into the game itself. This
is done using the LoadImage() function. There are two formats of this statement (see
FIG-7.26).

where:

id is an integer value specifying the ID to be assigned to
the image. This value must be 1 or above.

No two images may have the same ID value.

file is a string giving the name of the file containing the
image. The file must be in the media folder for this
project.

flag is an integer (0 or 1) which is used to determine how
transparency is handled when the image is displayed.

FIG-7.26

LoadImage() ()

integer

LoadImage id
Version 1

, file flag,

Version 2

()LoadImage file flag,

Hands On AppGameKit Studio Volume 1: A First Look at Resources 247

If flag has the value zero, then the alpha value of the
image sets the transparency; if the value is 1, then the
alpha value is ignored and all black pixels within the
image are made invisible.

A value of zero is assumed if this parameter is omitted.

Using the first version of this command, we need to specify the ID being assigned to
the image for the duration of the program. For example, if the first image to be loaded
is called “Ball.png”, then we would load the image using the statement

 LoadImage(1,”Ball.png”,1)

This will assign the ID value of 1 to the image and black pixels will be invisible.
Alternatively, we could use version 2 of the statement and write

 id = LoadImage(“Ball.png”,1)

This time the program decides on the ID to be assigned, but IDs are assigned in
ascending order starting at 100001, so, as long as this is the first image to be loaded
it will be assigned an ID of 100001.

Using the second version guarantees that we will not accidentally attempt to assign
the same ID to two different images (which would, in any case, produce an error).

Handling Errors
When we start using commands which try to access external resources – such as
image,sound, video or data files, we have to allow for the possibility that those files
may not be found.

SetErrorMode()

Although we haven’t discussed the SetErrorMode() command in any detail yet, it
appears by default in the skeleton code of every new project. The purpose of this
command is to determine how an executing program should respond to an error
condition (such as a file not being found). The command has the format shown in
FIG-7.27.

where:

mode is an integer value (0, 1, or 2) which determines how the
program reacts to error.
When mode is set to zero, runtime errors are ignored
and the program attempts to continue.
With mode set to 1, runtime errors display an error
message in the Message Window and the program
attempts to continue. However, this is only true if the
app is run in debug mode. When run normally, mode 1
reacts exactly like mode 0.
With mode set to 2, runtime errors create a message and
the program terminates.

We’ll demonstrate the effect of each setting by attempting to call LoadImage() using
the name of a file that doesn’t exist (see FIG-7.28).

FIG-7.27

SetErrorMode()

()SetErrorMode mode

248 Hands On AppGameKit Studio Volume 1: A First Look at Resources

Notice that the code attempts to load a file called nofile.png – which doesn’t exist.
However, when we run the code given above, the program runs in the same way as
it would do if the file had been found. In fact, it even assigns an ID of 100001 to the
new, supposedly-loaded image, so we are given no indication of a problem having
occurred.

Summary
■ Resources is the name given to other elements added to a project. These can be

images, sounds, music, sprites, virtual buttons, or text.

■ A resource needs to be created and assigned an ID before it can be used.

■ No two resources of the same type may be assigned the same ID number.

■ Resources of different types may have identical ID numbers.

■ As a general rule, resources should be deleted when no longer required.

■ Files containing resources must be stored in the project’s media folder.

■ Most images are constructed from colour dots known as pixels.

// Project: TestSetErrorCode
// Created: 19-07-18

//*** Ignore all runtime errors ***
SetErrorMode(0)

//*** Set window properties ***
SetWindowTitle("Test SetErrorCode()")
SetWindowSize(1024, 768, 0)
SetWindowAllowResize(1) // allow the user to resize the window

//*** Set display properties ***
SetDisplayAspect(1024/768)
UseNewDefaultFonts(1)

//*** Try to load image ***
img = LoadImage("nofile.png")

//*** Display ID assigned to image ***
do
 Print(img)
 Sync()
loop

FIG-7.28

Using SetErrorMode()

Activity 7.7

Start a new project called TestSetErrorCode and implement the code given
above.

Test the program again using 1 as the parameter in the call to SetErrorCode().
How does the program react when running in
 a) normal mode
 b) debug mode

Finally test the program with the parameter set to 2, observing how the app
handles the error this time.

Hands On AppGameKit Studio Volume 1: A First Look at Resources 249

■ An image constructed from pixels is known as a bitmap image.

■ Bitmap images can be stored in many different formats.

■ Lossless formats save an exact copy of an image but create large files.

■ Lossy formats save a degraded copy of the image but create smaller files.

■ AGK can handle three bitmap formats: BMP, PNG, and JPG.

■ BMP and PNG are lossless file formats; JPG is a lossy file format.

■ Images can contain transparent elements.

■ Transparency can be achieved in one of two ways: by making all black pixels
invisible or by adding an alpha channel to the image.

■ Alpha channels allow degrees of translucency.

■ When creating an image in which black elements are to be made invisible
make sure that the image has not been created using anti-aliasing.

■ Anti-aliasing can cause problems around the edges of objects within an image.

■ Use LoadImage() to load an image and assign it a unique ID number.

■ Use SetErrorMode() to adjust how your app reacts to a runtime error.

250 Hands On AppGameKit Studio Volume 1: A First Look at Resources

Sprites

Introduction
Although all images need to be loaded before they can be used, in order to see an
image on the screen, we’ll need to load that image into a sprite.

The term sprite is used for a component containing a two-dimensional bitmap single
frame or multi-frame image which can be positioned, sized, rotated and moved
independently of other elements on the screen. When using a multi-frame image,
cartoon-like animation can be achieved.

Using Sprites
CreateSprite()

To create a sprite we need to specify the image to be displayed by the sprite. This is
done using the CreateSprite() statement (see FIG-7.29).

where:

id is an integer value specifying the ID to be assigned to
the sprite. This value must be 1 or above.

No two sprites may have the same ID value.

imageId is an integer value specifying the ID of the image being
copied into the sprite. This image must previously have
been loaded using a LoadImage() statement.

Use 0 to create a white sprite without an image.

Like the two versions of LoadImage(), the two options in the CreateSprite()
statement allow us to choose between deciding on the ID number ourselves (version
1) or letting the program decide for us (version 2 - assigned values start at 100001).

In the example we are about to create, we will assign our own ID numbers since it
uses only a single image and a single sprite. So, to create a sprite showing the ball
image, we would first load the image and then create the sprite:

 LoadImage(1,”ball.png”,1)
 CreateSprite(1,1)

Notice that the image and sprite have both been assigned an ID of 1. This is not a
problem since they are two different types of objects (image and sprite). Only when
we assign the same ID to two objects of the same type do we cause an error. Now we
are ready to create a program to display our first image (see FIG-7.30).

()

integer

CreateSprite id
Version 1

, imageId

Version 2

()CreateSprite imageId

FIG-7.29

CreateSprite()

Hands On AppGameKit Studio Volume 1: A First Look at Resources 251

Notice that the sprite is created outside the do...loop structure, and unlike Print()
and Draw...() statements, there is no requirement to recreate the sprite each time the
screen is refreshed.

Once a sprite has been created, AGK handles its display, making sure it is visible
continually without any requirement from us to code for its reappearance between
each call to Sync().

As we can see from running FirstSprite, AGK has a problem with sizing the image
(see FIG-7.31).

�
When a sprite is first
created, its top left
corner is at position
(0,0) - the top left corner
of the app window.

FIG-7.30

Displaying a Sprite

// Project: FirstSprite
// Created: 2015-01-16

//*** Set window title and size ***
SetWindowTitle("First Sprite")
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Load image ***
LoadImage(1,"Ball.png")

//*** Create sprite ***
CreateSprite(1,1)
do
 Sync()
loop

Activity 7.8

Create a new project called FirstSprite.

Compile the default code in order to create the project’s media folder. From the
files you downloaded to accompany this book, go to the AGK/Resources/Ch07
folder and copy the file Ball.png to the project’s media folder.

Change the contents of main.agc to match that given in FIG-7.29.

Run program. What is strange about the image?

FIG-7.31

Sprite Size Problem

252 Hands On AppGameKit Studio Volume 1: A First Look at Resources

Since we are working with a percentage-based screen layout, AGK has no idea
exactly how large to make the sprite. It handles this by assuming that the physical
size of the image represents the percentage required. The ball image is 128 pixels
wide by 128 pixels high, so AGK assumes we want the image to take up 128% of the
width of the app window. Unfortunately, this is nowhere near the actual size we want.

SetSpriteSize()

The SetSpriteSize() statement allows use to specify the dimensions of a sprite
when it appears on the screen. The sizes are given as a percentage of the screen, or
in virtual pixels, depending on the option chosen when the program was created. The
statement has the format shown in FIG-7.32.

where:

id is the integer value previously assigned as the ID of the
sprite to be resized.

w is a real value giving the width required. This value is
given as a percentage of the screen width or in virtual
pixels as appropriate.

h is a real value giving the height required (percentage or
virtual pixels).

So, if we wanted the ball sprite to occupy only 50% of the screen’s width and height,
we would use the line:

SetSpriteSize(1,50,50)

As we can see from Activity 7.8, making the sprite 50% in both directions causes the
circular ball to become rugby-ball shaped (see FIG-7.33).

FIG-7.32

SetSpriteSize()

()SetSpriteSize id w h

Activity 7.9

Modify FirstSprite by adding the SetSpriteSize() statement given above.

Run the program and see how this changes the image displayed. What shape is
the ball?

FIG-7.33

Sprite Shape Problem

Hands On AppGameKit Studio Volume 1: A First Look at Resources 253

The reason for this is simple enough to work out when we remember that our window
is 1024 pixels wide and 720 pixels high. Since the ball is 50% of the width and 50%
of the height, that means that it is 512 pixels wide but only 360 pixels high!

GetDisplayAspect()

In our first program back in Chapter 3 we discovered the need to use the
SetDisplayAspect() command in order to set the ratio of an app's width to its height.
We can discover this ratio setting using the GetDisplayAspect() command (see
FIG-7.34).

So, to have the ball in our FirstSprite project appear round, we need to adjust the
height of the ball by the display aspect ratio. This gives us the following line

SetSpriteSize(1,50,50*GetDisplayAspect())

Rather than work out the correct percentage for the sprite in order to make it 512
pixels high and hence return to a round-shaped ball, SetSpriteSize() allows us to
set the actual size of one dimension and use the value -1 for the other. When we
choose this option, AGK works out the second dimension automatically to ensure
that the sprite retains its original width-to-height ratio. For example, if we set the w
parameter to 50 and h to -1 using the line

SetSpriteSize(1,50,-1)

the sprite will return to its round shape.

Of course, setting the h to 50 and w to -1 with the line
SetSpriteSize(1,-1,50)

will still result in a round ball, but this second statement will produce a ball that is
smaller since 50% of the app window’s height is much less than 50% of its width (see
FIG-7.35).

FIG-7.34

GetDisplayAspect()

()GetDisplayAspectfloat

FIG-7.35

How Sprite Size
Changes with Screen
Size

50% of width

50% of height

SetSpriteSize(1, 50, -1) SetSpriteSize(1, -1, 50)

Activity 7.9

Modify FirstSprite to use GetDisplayAspect() in the SetSpriteSize()
command then use the -1 as the third parameter to check that the results are
identical. Next, try making the width -1 and the height 50 to see how the size of
the ball changes.

254 Hands On AppGameKit Studio Volume 1: A First Look at Resources

GetSpriteWidth()

We can discover the width of a sprite using the GetSpriteWidth() function (see FIG-
7.36).

where:

id is an integer value giving the ID of the sprite whose
width is to be retrieved.

The value returned will be given in the units of measurement used by the program
(percentage or virtual pixels).

GetSpriteHeight()

We can discover the height of a sprite using the GetSpriteHeight() function (see
FIG-7.37).

where:

id is an integer value giving the ID of the sprite whose
width is to be retrieved.

The value returned will be given in the units of measurement used by the program
(percentage or virtual pixels).

SetSpritePosition()

An existing sprite can be moved to a new position on the screen using the
SetSpritePosition() statement which has the format shown in FIG-7.38.

where:

id is the integer value previously assigned as the ID of the
sprite to be moved.

x, y are real values giving the new coordinates of the sprite
(percentage or virtual pixels). These coordinates refer to
where the top-left corner of the sprite will be positioned.

By placing the SetSpritePosition() statement within a for loop and using the loop
counter as a parameter, we can get the sprite to travel across the window.

FIG-7.36

GetSpriteWidth()

()GetSpriteWidthinteger id

FIG-7.37

GetSpriteHeight()

()GetSpriteHeightinteger id

FIG-7.38

SetSpritePosition() ()SetSpritePosition id x y

Activity 7.10

In FirstSprite, modify the code to reduce the size of the ball to 10% of the app
height. Create a two second delay then move the ball sprite to the centre of the
app window.

Hands On AppGameKit Studio Volume 1: A First Look at Resources 255

GetSpriteX() and GetSpriteY()

We can discover the coordinates of a sprite’s top left corner using the functions
GetSpriteX() and GetSpriteY() which return the x and y coordinates respectively.
The formats of the two statements are shown in FIG-7.39.

where:

id is an integer value giving the ID of an existing sprite.

The value returned will use the coordinate system setup for the program (percentage
or virtual pixels).

SetSpriteVisible()

We can make a sprite invisible – and make it reappear – using the SetSpriteVisible()
statement which has the format shown in FIG-7.40.

where:

id is the integer value previously assigned as the ID of the
sprite.

visible is an integer value (0 or 1) specifying that the sprite is to
be hidden (0) or made visible (1).

There is an inefficiency in the solution’s code, in that the new lines are repeatedly

Activity 7.11

Remove the SetSpritePosition() call from FirstSprite and replace it with the
following code:

 for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 next p

Test the new version of the project.

FIG-7.39

GetSpriteX()
GetSpriteY()

()GetSpriteXinteger id

()GetSpriteYinteger id

Activity 7.12

Modify FirstSprite so that the latest position of the ball sprite is displayed and
updated as the ball moves across the screen.

FIG-7.40

SetSpriteVisible()

()SetSpriteVisible id , visible

Activity 7.16

Modify SpriteDepth so that the two poppy sprites are hidden after the ball has
moved to the bottom of the screen for the first time.

256 Hands On AppGameKit Studio Volume 1: A First Look at Resources

executed, when, in fact, they need only be executed once. A better (but longer)
solution would be to end the program with the following code:

//*** Move ball sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(ball_spr,p,p)
 Sync()
next p

//*** Make poppies invisible ***
SetSpriteVisible(poppy_spr,0)
SetSpriteVisible(poppy2_spr,0)

do
 //*** Move ball sprite across the screen ***
 for p = 1 to 100
 SetSpritePosition(ball_spr,p,p)
 Sync()
 next p
loop

Now the first traversal of the ball and the hiding of the poppies are dealt with before
entering the do...loop and, as a result, are only executed once.

GetSpriteVisible()

To discover if a sprite is currently visible, we can use the GetSpriteVisible()
statement which has the format shown in FIG-7.41.

where:

id is the integer value previously assigned as the ID of the
sprite.

The function returns 1 if the sprite is visible, 0 if it is not.

SetSpriteAngle() and SetSpriteAngleRad()

We can rotate a sprite by a specified angle using either SetSpriteAngle() – which
accepts an angle given in degrees – or SetSpriteAngleRad() – which takes an angle
given in radians. The format for these functions is shown in FIG-7.42.

where:

id is an integer value giving the ID of the sprite to be
rotated.

deg is a real value giving the angle (in degrees) through
which the sprite is to be rotated.

rad is a real value giving the angle (in radians) through
which the sprite is to be rotated.

FIG-7.41

GetSpriteVisible()

()GetSpriteVisibleinteger id

FIG-7.42

SetSpriteAngle()
SetSpriteAngleRad()

()SetSpriteAngle id deg

)rad(SetSpriteAngleRad id

�
By default, the
sprite rotates about
its centre.

Hands On AppGameKit Studio Volume 1: A First Look at Resources 257

The angle given is an absolute value – not relative to the sprite’s current rotation –
and is measured from the 3 o’clock position in a clockwise direction.

For example, an arrow shaped sprite, positioned near the centre of the app window,
and rotated by 45o, creates the display shown in FIG-7.43.

The program in FIG-7.44 rotates the arrow sprite shown above 1o at a time to create
a revolving effect.

FIG-7.43

A Sprite Rotated by
45o

Sprite before
rotation

Sprite after
rotation

Point of
rotation

FIG-7.44

A Sprite Rotated by
45o

// Project: RotateSprite
// Created: 2015-02-26

//*** Set window size and title ***
SetWindowSize(1024,768,0)
SetWindowTitle(“Rotate a Sprite”)
UseNewDefaultFonts(1)

//*** Clear the screen to grey ***
SetClearColor(200,200,200)
ClearScreen()

//*** Set up sprite ***
img = LoadImage(“Arrow.png”)
spr = CreateSprite(img)
SetSpriteSize(spr,20,-1)
SetSpritePosition(spr,40,50)

//*** Display continually rotating sprite ***
do
 for angle = 0 to 359
 SetSpriteAngle(spr,angle)
 Sync()
 next angle
loop

Activity 7.17

Start a new project called RotateSprite and implement the code given in FIG-
7.44.

When you run the program, check that the sprite is being rotated.

258 Hands On AppGameKit Studio Volume 1: A First Look at Resources

GetSpriteAngle() and GetSpriteAngleRad()

To discover the current angle of rotation of a sprite we can use the functions
GetSpriteAngle() and GetSpriteAngleRad() (see FIG-7.45).

where:

id is an integer value giving the ID of the sprite whose
rotation is to be determined.

The value returned by the functions is the angle through which the sprite is currently
rotated in either degrees or radians depending on which function is used.

SetSpriteOffset()
By default, when a sprite is positioned, it is the top-left corner of that sprite that is
located at the given position, but when a sprite is rotated, it rotates about the centre
of the sprite. The point about which the sprite rotates is known as the sprite offset.
(see FIG-7.46).

The sprite’s point of rotation can be repositioned using the SetSpriteOffset()
function (see FIG-7.47).

where:

id is an integer value giving the ID of the sprite whose
offset is to be modified.

x, y are real values giving the position of the new offset.

FIG-7.45

GetSpriteAngle()
GetSpriteAngleRad()

()GetSpriteAngle id

)(GetSpriteAngleRad idfloat

float

Activity 7.18

Modify RotateSprite so that the angle of rotation is displayed (in degrees) and
continually updated.

When you run the program, check the point about which the sprite is being
rotated

FIG-7.46

Points Used for
Positioning and
Rotation

Sprite o�set

The point used
to position the

sprite

Sprite

Sprite border

The point used
when rotating

the sprite

FIG-7.47

SetSpriteOffset()

()SetSpriteOffset id , x , y

Hands On AppGameKit Studio Volume 1: A First Look at Resources 259

These values are measured from the top-left corner of
the sprite which is taken as point (0,0) when specifying
values for x and y.

The offset point may be outside the bounds of the sprite.

Various possible offset points are shown in FIG-7.48.

GetSpriteOffsetX() and GetSpriteOffsetY()
To discover a sprite’s current offset values (measured from the top-left of the sprite),
we can use the commands GetSpriteOffsetX() and GetSpriteOffsetY() (see FIG-
7.49).

where:

id is an integer value giving the ID of the sprite.

GetSpriteXByOffset() and GetSpriteYByOffset()

The functions GetSpriteXByOffset() and GetSpriteYByOffset() return the screen
coordinates of a sprite’s offset point. These functions have the format shown in FIG-
7.50.

where:

id is an integer value giving the ID of the sprite.

FIG-7.48 Some Possible Offset Point Options

Sprite

SetSpriteOffset(ID,GetSpriteWidth(ID),GetSpriteHeight(ID))

SetSpriteOffset(ID,0,0)

SetSpriteOffset(ID,0,GetSpriteHeight(ID)/2)

SetSpriteOffset(ID,GetSpriteWidth(ID)/2,-5)

Activity 7.19

Modify RotateSprite so that sprite rotates about the middle of its left edge.

FIG-7.49

GetSpriteOffsetX()
GetSpriteOffsetY()

()GetSpriteOffsetX id

)(GetSpriteOffsetY idfloat

float

FIG-7.50

GetSpriteXByOffset()
GetSpriteYByOffset()

()GetSpriteXByOffset id

)(GetSpriteYByOffset idfloat

float

260 Hands On AppGameKit Studio Volume 1: A First Look at Resources

SetSpritePositionByOffset()

When we use SetSpritePosition() to place a sprite on the screen, the coordinates
we specify are those for the top-left corner of the sprite. However, by using
SetSpritePositionByOffset() we can position the sprite according to its offset
position. The format for this statement is given in FIG-7.51.

where:

id is the integer value previously assigned as the ID of the
sprite to be moved.

x, y are real values giving the new coordinates of the sprite
(percentage or virtual pixels). These coordinates refer to
the position of the offset of the sprite.

For example, assuming a sprite (ID = 1) has its default offset setting (at the sprite’s
centre), then using the line

SetSpritePositionByOffset(1, 50, 50)

would place the sprite’s centre at position (50,50).

FIG-7.52 shows the difference between using SetSpritePosition() and
SetSpritePositionByOffset() to position a sprite.

DeleteSprite()

When a sprite is no longer required by a program, that sprite can be deleted. Although
deletion is not necessary, it does free up resources on the machine which can, in turn,
speed up our game. Sprites are deleted using the DeleteSprite() statement whose
format is shown in FIG-7.53.

Activity 7.20

Modify RotateSprite so that Print() statements display the sprite’s offset
values and the screen position of the offset point.

FIG-7.51

SetSpritePositionBy
Offset()

()SetSpritePositionByOffset id x y

FIG-7.52 Using SetSpritePositionByOffset()

Q

Q

Q

Q

SetSpritePosition(1,50,50) SetSpritePositionByOffset(1,50,50)

(50,50)

(50,50)

Hands On AppGameKit Studio Volume 1: A First Look at Resources 261

where:

 id is an integer value giving the ID of the sprite to be deleted.

DeleteAllSprites()

If a program contains several sprites, they can all be deleted, using the
DeleteAllSprites() statement (see FIG-7.54).

DeleteImage()

When an image is no longer required by any sprite, that image can be deleted, thereby
freeing up further resources. To delete an image we use the DeleteImage() statement
(see FIG-7.55).

where:

id is an integer value giving the ID of the image to be
deleted.

DeleteAllImages()

Rather than delete images individually, we can delete every loaded image using the
DeleteAllImages() statement (see FIG-7.56).

Of course, we should only call this statement when every image in the program is no
longer being used by other program elements such as a sprite. Deleting a resource
only deletes it from the computer’s memory; the actual file containing the resource
is not affected.

There are many more sprite commands and these will be covered in later chapters.

Sprite Depth
If two or more sprites overlap, the last one to be created will often appear “on top”,
obscuring some or all of the earlier sprite. For example, in FIG-7.57 we can see the
results of overlapping a ball and poppy sprite with different creation sequences.

FIG-7.53

DeleteSprite()

(DeleteSprite id)

FIG-7.54

DeleteAllSprites() ()DeleteAllSprites

FIG-7.55

DeleteImage() (DeleteImage id)

FIG-7.56

DeleteAllImages()

()DeleteAllImages

FIG-7.57

Sprite Depth

CreateSprite(2,2) //Poppy sprite
CreateSprite(1,1) //Ball sprite

CreateSprite(1,1) //Ball sprite
CreateSprite(2,2) //Poppy sprite

262 Hands On AppGameKit Studio Volume 1: A First Look at Resources

SetSortCreated()

However, AGK does not guarantee that sprites will behave in this way (with the last
to be created appearing over the earlier one) unless a call is made to the
SetSortCreated() function (see FIG-7.58).

where:

flag is 0 or 1. When set to 1, sprites on the same depth layer
(see below) are drawn in the order in which they were
created. When set to 0 (the default value), the order in
which sprites are drawn is undefined.

SetSpriteDepth()

Back in the days when animation cartoons were drawn by hand, the overlapping
effect we see in FIG-7.57 was achieved by drawing each image on a separate sheet
of acetate, with the object on the top sheet obscuring objects on lower sheets.

AGK achieves the digital equivalent of these acetate sheets using sprite layers. The
layer on which a sprite is placed can be set using the SetSpriteDepth() function.
The layer specified when calling this function can range between 0 and 10,000, with
0 being the top layer and 10,000 the bottom layer.

By default, all sprites are placed on layer 10 (depth 10). If we want to ensure
overlapping sprites are shown in a specific layered sequence, more efficient bytecode
will result from setting each sprite to a different depth rather than leaving them at the
same depth and making use of SetSortCreated().

To set a sprite’s layer, use SetSpriteDepth() (see FIG-7.59).

where:

id is the integer value previously assigned as the ID of the
sprite.

depth is an integer value giving the layer setting. A lower
number will bring the sprite “forward” towards the top
layer. This value can be in the range 0 to 10,000.

The program in FIG-7.60 is an extension of our FirstSprite project and demonstrates
one sprite passing “behind” another.

FIG-7.58

SetSortCreated()

()SetSortCreated flag

FIG-7.59

SetSpriteDepth()

()SetSpriteDepth id depth

FIG-7.60

Demonstrating Sprite
Depth

// Project: SpriteDepth
// Created: 2015-01-16
//*** Set window title and size ***
SetWindowTitle(“Sprite Depth”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()
//*** Load images ***

Hands On AppGameKit Studio Volume 1: A First Look at Resources 263

The layer on which a sprite is placed can be changed during the execution of a
program. This allows us to have the sprite pass in front of a second sprite during one
part of the program and behind the same sprite later.

GetSpriteDepth()

There will sometimes be situations where we don’t know which layer a sprite is on
(perhaps its layer has been chosen at random); to determine the current depth of a
sprite, use the GetSpriteDepth() statement (see FIG-7.61) which returns a sprite’s
depth setting.

where:

id is the integer value previously assigned as the ID of the
sprite.

FIG-7.60
(continued)

Demonstrating Sprite
Depth

ball_img = LoadImage(“Ball.png”)
poppy_img = LoadImage(“Poppy.png”)

//*** Create ball sprite ***
ball_spr = CreateSprite(ball_img)
SetSpriteSize(ball_spr,10,-1)

//*** Create poppy sprite on layer 9 ***
poppy_spr = CreateSprite(poppy_img)
SetSpriteSize(poppy_spr,20,-1)
SetSpritePosition(poppy_spr,40,40)
SetSpriteDepth(poppy_spr,9)

//*** Move ball sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(ball_spr,p,p)
 Sync()
next p
//*** Do nothing ***
do
 Sync()
loop

Activity 7.13

Create a new project called SpriteDepth and code main.agc to match the code
given in FIG-7.60.

Copy the files Ball.png and Poppy.png from the AGK/Resources/Ch07 resources
folder to the project’s media folder.

Modify your program so that the ball repeats its movement from top left to
bottom right continually.

Activity 7.14

Modify SpriteDepth so that the ball passes over the poppy rather than under it.

FIG-7.61

GetSpriteDepth()

()GetSpriteDepthinteger id

264 Hands On AppGameKit Studio Volume 1: A First Look at Resources

CloneSprite()

We can make a copy of a sprite using the CloneSprite() statement. This will make
an exact copy of the sprite specified. The statement’s format is shown in FIG-7.62.

where:

id is the integer value of the ID to be assigned to the new
sprite.

idToCopy is an integer value giving the ID of the existing sprite to
be cloned.

The two versions of CloneSprite() allow us to choose between deciding on the ID
number ourselves (version 1) or letting the program decide for us (version 2).

Whatever characteristics have been set for the original sprite (size, transparency,
depth, etc.) will be duplicated in the clone.

Missing Images
Earlier in this chapter we saw how an app would handle a missing image (when
calling LoadImage()). If this situation arises when the error mode is set to 0 or 1
(using SetErrorMode()), the program will continue to execute even though the
image file has not been found.

If we attempt to assign a missing image's ID to a sprite with statements such as
img = LoadImage("nofile.png")
spr = CreateSprite(img)
...

our app will display the sprite in a similar style to that in FIG-7.63. This indicates that
the image assigned to the sprite has not been found.

FIG-7.62

CloneSprite()

()CloneSprite idToCopy

()CloneSprite id , idToCopy

integer

Version 1

Version 2

Activity 7.15

Modify SpriteDepth, making a copy of the poppy sprite and positioning it at
(20,20).

Assign the new sprite a depth setting of 8. What happens as the ball passes the
two poppies?

FIG-7.63

Sprite Assigned an
Missing Image

Hands On AppGameKit Studio Volume 1: A First Look at Resources 265

When loading very large images, the "missing image" symbol may appear for a few
seconds while the image data is being copied from backing storage into memory.

Summary
■ To display an image on the screen it must first be loaded into a sprite.

■ Use CreateSprite() to create a sprite from a previously loaded image.

■ Using the default setup, screen distances are given in percentage terms and
sprites use the pixel dimensions of the image it contains as a percentage value
when determining the size of the image.

■ Use SetSpriteSize() to set the size of a sprite.

■ When sizing a sprite, use a value of -1 for the width (or height) in order
to allow AGK to maintain the correct width-to-height ratio for the image
displayed in the sprite.

■ Use GetSpriteWidth() and GetSpriteHeight() to find the current
dimensions of a sprite.

■ Use SetSpritePosition() to position a sprite.

■ The coordinates given when positioning a sprite are for the top-left corner of
the sprite.

■ Sprites can be placed on different layers.

■ There are 10,001 layers numbered 0 to 10,000.

■ Layer 0 is the top layer; layer 10,000 is the bottom layer.

■ A sprite placed on a higher layer will be drawn in front of a sprite placed on a
lower layer.

■ When sprites are placed on the same layer, the order in which they are drawn
is, by default, undefined.

■ Use SetSortCreated() to ensure sprites on the same layer are drawn in the
order they are created (latest sprite in front of earlier sprites).

■ Use SetSpriteDepth() to set the layer on which a sprite is to be drawn.

■ Use GetSpriteDepth() to discover the layer on which a sprite has been drawn.

■ Use CloneSprite() to create an exact copy of an existing sprite.

■ A cloned sprite will initially be an exact copy of the original in terms of sprite
size, draw layer, visibility, etc.

■ Use SetSpriteVisible() to make a sprite invisible/visible.

■ Use GetSpriteVisible() to determine the visibility of a specified sprite.

■ Use SetSpriteAngle() or SetSpriteAngleRad() to set a sprite’s angle of
rotation.

■ Use GetSpriteAngle() or GetSpriteAngleRad() to get a sprite’s angle of
rotation.

■ Use SetSpriteOffset() to modify the point of rotation of a sprite.

■ Use GetSpriteOffsetX() and GetSpriteOffsetY() to discover a sprite’s

266 Hands On AppGameKit Studio Volume 1: A First Look at Resources

offset position measured from the top-left of the sprite.

■ Use GetSpriteXByOffset() and GetSpriteYByOffset() to discover a sprite’s
offset screen coordinates.

■ Use SetSpritePositionByOffset() to position a sprite according to its
current offset position.

■ Use DeleteSprite() to delete a specific sprite.

■ Use DeleteAllSprites() to delete every sprite.

■ If the sprite displaying an image has been deleted, the image shown on that
sprite (assuming it is not displayed on other sprites) can be deleted.

■ Use DeleteImage() to delete a specified, previously loaded image.

■ Use DeleteAllImages() to delete all images previously loaded.

■ Deleting sprites and images frees up memory.

■ When an image file cannot be found, a "missing image" symbol will be display
when an attempt is made to display the image in a sprite.

■ The "missing image" symbol may appear temporarily when a large file is being
loaded.

Hands On AppGameKit Studio Volume 1: A First Look at Resources 267

Detecting User Interaction

Introduction
Most video games react to mouse clicks or touches on a pressure-sensitive screen.
AGK BASIC uses three main commands to detect a mouse or screen press. Typically,
we will detect a press or release to activate a screen button or affect the behaviour of
a sprite.

Pointer Statements
GetPointerPressed()

We can detect the moment a mouse left button press (or a screen press) happens using
the GetPointerPressed() function which has the format shown in FIG-7.64.

The statement returns 1 if a button press/touch has occurred during the current screen
frame (in other words, since the last call to Sync()), otherwise zero is returned. Note
that this means that the function will return zero on subsequent screen frames if the
button remains pressed (or the screen touch continues).

GetPointerReleased()

A complementary statement is GetPointerReleased() which returns 1 if the mouse
button is released during the current screen frame, or the finger lifted from the screen.
This statement has the format shown in FIG-7.65.

If a release has not occurred during the current frame, zero is returned.

The code in FIG-7.66 demonstrates the use of the GetPointerPressed() and
GetPointerReleased() statements, displaying a message each time a press or release
is detected.

FIG-7.64

GetPointerPressed()

()GetPointerPressedinteger

FIG-7.65

GetPointerReleased()

()GetPointerReleasedinteger

FIG-7.66

Using Pointer
Statements

// Project: UserInteraction
// Created: 2015-01-17
//*** Set window title and size ***
SetWindowTitle(“User Interaction”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()
do
 //*** Check for press ***
 if GetPointerPressed()=1
 Print(“Pressed”)
 endif
 //*** Check for release ***
 if GetPointerReleased()=1
 Print(“Released”)
 endif
 Sync()
loop

268 Hands On AppGameKit Studio Volume 1: A First Look at Resources

GetPointerState()

Sometimes, we are not interested the moment a press or release occurs but are more
concerned with the general state of a button – whether it is currently being held down
or not. The GetPointerState() function returns 1 while the left mouse button is
pressed down or a finger remains on the screen, otherwise zero is returned.

The GetPointerState() command has the format shown in FIG-7.67.

Note this is different from the previous two statements which only return 1 for a
single instant as the mouse/finger is pressed/lifted.

GetPointerX() and GetPointerY()

We can find out the current position on the screen of the mouse pointer or discover
the last position where the screen has been touched using GetPointerX() (which
returns the x-coordinate) and GetPointerY() (which returns the y-coordinate).

The formats for these two statements are shown in FIG-7.68.

The program in FIG-7.69 displays the coordinates of the pointer as it is moved about
the screen.

Activity 7.21

Create a new project called UserInteraction and code main.agc to match the
code given in FIG-7.63.

Run the program and watch for the messages appearing as the mouse button is
pressed and released. (The message will flash up only for an instant!)

Try running the app on your Android tablet using AGKPlayer. The messages
should appear as you press and released the screen.

�
This can be useful
when we are trying to
code a drag operation.

FIG-7.67

GetPointerState()

()GetPointerStateinteger

Activity 7.22

Modify UserInteraction by removing the existing if and Print instructions.

Change the code to display the messages Press Held when the user is holding
down the mouse button (or keeping their finger on the screen) and No press
when the mouse button is not being pressed (or the screen not touched).

Test your program.

FIG-7.68

GetPointerX()
GetPointerY()

()GetPointerXinteger

()GetPointerYinteger

Hands On AppGameKit Studio Volume 1: A First Look at Resources 269

Rather than have a continually updating coordinate display, we could read the
coordinates of the pointer only at the moment the mouse button (or screen) is pressed
by making use of the code:

if GetPointerPressed() = 1
 x# = GetPointerX()
 y# = GetPointerY()
endif

FIG-7.69

Displaying the Pointer’s
Coordinates

// Project: PointerPosition
// Created: 2015-01-17

//*** Set window title and size ***
SetWindowTitle(“Pointer Position”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)

//*** Clear the screen to light grey ***
SetClearColor(200,200,200)
ClearScreen()

do
 //*** Get pointer’s coordinates ***
 x# = GetPointerX()
 y# = GetPointerY()

 //*** Display pointer coordinates ***
 PrintC(“(“)
 PrintC(x#)
 PrintC(‘,’)
 PrintC(y#)
 Print(“)”)
 Sync()
loop

�
The results achieved by
the second part of Activity
7.19 depend entirely on
the aspect ratio of your
tablet.

Activity 7.23

Create a new project called PointerPosition and code main.agc to match the
code given in FIG-7.69.

Run the program. Is it possible to position the pointer at points (0,0) and
(100,100)?

Try running the app on your Android tablet using AGK Player 2. What range of
points can be achieved?

Activity 7.24

Modify PointerPosition so that the pointer coordinates are only updated when
the mouse button is pressed.

Test your program.

270 Hands On AppGameKit Studio Volume 1: A First Look at Resources

The Screen Pointer and Sprites
GetSpriteHit()

We can find out if a particular screen position is over a sprite using the GetSpriteHit()
command. This is useful for finding out if the user has, for example, clicked/pressed
on a sprite. The command’s format is shown in FIG-7.70.

where:

 x, y are real numbers giving the position within the app window to be
 tested. The values will represent percentages or virtual
 coordinates depending on the window setup.

If the location is over a sprite, the sprite ID is returned, otherwise zero is returned.

The program in FIG-7.68 displays two sprites: ball and poppy. When the mouse
pointer moves over a sprite (or the screen is pressed over a sprite), that sprite becomes
invisible.

FIG-7.70

GetSpriteHit()

()GetSpriteHitinteger x y

FIG-7.71

Using the Screen
Pointer with Sprites

// Project: SpriteOver
// Created: 2015-01-17

//*** Set window title and size ***
SetWindowTitle(“Sprite Over”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
//*** Set screen background to grey ***
SetClearColor(120,120,120)
ClearScreen()

//*** Load images required ***
ball_img = LoadImage(“Ball.png”)
poppy_img = LoadImage(“Poppy.png”)

//*** Create, size and position ball sprite ***
ball_spr = CreateSprite(ball_img)
SetSpriteSize(ball_spr, 10,-1)
SetSpritePosition(ball_spr, 20, 33)

//*** Create, size and position poppy sprite ***
poppy_spr = CreateSprite(poppy_img)
SetSpriteSize(poppy_spr, 15,-1)
SetSpritePosition(poppy_spr, 60, 30)

do
 //*** Get ID of any sprite under pointer ***
 spr_hit = GetSpriteHit(GetPointerX(),GetPointerY())

 //*** If a sprite is under pointer, hide it ***
 if spr_hit <> 0
 SetSpriteVisible(spr_hit,0)
 endif
 Sync()
loop

Hands On AppGameKit Studio Volume 1: A First Look at Resources 271

We might be forgiven for assuming that when a sprite is invisible it can no longer be
hit. That is to say, GetSpriteHit() would not detect the fact that the pointer was over
that invisible sprite. But, in fact, this is not the case. Invisible sprites are detected in
just the same way as visible ones.

We can get a sprite in our last program to flip between being visible and invisible
using the expression

SetSpriteVisible(spr_hit, 1-GetSpriteVisible(spr_hit))

Summary
■ Basic user interaction allows us to detect a screen touch or mouse button press.

■ It is possible to detect when:
 the mouse button/screen is first pressed
 the mouse button/screen is first released
 the current state of the mouse button/screen - pressed or unpressed.

■ We can detect if a mouse/screen press occurs over a sprite.

■ Use GetPointerPressed() to check if a mouse button or screen press has just
taken place.

■ Use GetPointerReleased() to check if a mouse button has just been released,
or a finger lifted from a screen.

■ Use GetPointerState() to check if a mouse button is being held down, or a
finger remains pressed on the screen.

■ Use GetPointerX() and GetPointerY() to determine the current location of
the mouse pointer on the screen or the last point touched on a screen.

■ Use GetSpriteHit() to determine if a specified point on the screen is over an
existing sprite.

■ The value returned by GetSpriteHit() is unaffected by the visibility of a
sprite.

Activity 7.25

Create a new project called SpriteOver and code main.agc to match the code
given in FIG-7.68. Run the program and move the pointer over each sprite in
turn. Do the sprites disappear when the pointer moves over them?

Using GetPointerPresssed(), modify the program so that a sprite only
disappears when the mouse button is clicked over it.

Test your program.

Activity 7.26

Modify SpriteOver so that the sprites switch between being visible and invisible
each time they are clicked.

Test your program.

272 Hands On AppGameKit Studio Volume 1: A First Look at Resources

Text Resources

Introduction
We’ve already seen how to display information on the screen using the Print()
statement. But the output produced by the Print() statement has two disadvantages:

■ it disappears after subsequent calls to Sync() and so the Print() statement
must be executed repeatedly to maintain the text on the screen.

■ there is no control over where on the screen the text will appear.

Both these limitations mean that the Print() statement is of little use in most apps.

Luckily, AGK offers a second and more controlled way of creating textual output –
text resources. Just like image and sprite resources, text resources must be created
and assigned a unique ID.

Using a text resource, we can position text anywhere on the screen and, as with
sprites, AGK automatically ensures that the text remains visible after calls to Sync().

Some of the many statements available for manipulating text resources are described
here.

Text Statements
UseNewDefaultFonts()

In early versions of AGK, text was implemented using characters extracted from a
built-in image containing all available symbols. This resulted in letters appearing
“blocky” with their pixel structure clearly visible. However, in later versions the
image-based text can be replaced by vector-based text which gives a much “smoother”
character display.

In order to maintain backward compatibility, this new system is off by default and
must be activated using UseNewDefaultFonts() (see FIG-7.72).

where:

font is an integer value (0 or 1) which activates the new font
style (1) or deactivates it (0).

We can see the difference between the old and new text in FIG-7.73.

CreateText()

The CreateText() statement allows us to create a new text resource. The statement
has the format shown in FIG-7.74.

FIG-7.72

UseNewDefaultFonts()

()fontUseNewDefaultFonts

FIG-7.73

Old and New Text
Displays

Original Text New Text

Hands On AppGameKit Studio Volume 1: A First Look at Resources 273

where:

id is an integer value specifying the ID to be assigned to
the text resource.

string is a string containing the text to be held within the text
resource.

Version 1 of the statement allows the programmer to select the resource ID; version
2 automatically assigns an ID and returns that ID.

For example, we could create a text resource containing the phrase Hello world,
assigning it an ID of 1 using the statement:

 CreateText(1, “Hello world”)

SetTextColor()

By default, text displayed by a text resource is white, but we can select the colour and
transparency of a specific text resource using the SetTextColor() statement (see
FIG-7.75).

where:

id is an integer value specifying the ID of the text resource
whose colour is to be set.

red is an integer value specifying the intensity of the red
component of the colour. Range 0 to 255.

green is an integer value specifying the intensity of the green
component of the colour. Range 0 to 255.

blue is an integer value specifying the intensity of the blue
component of the colour. Range 0 to 255.

alpha is an integer value specifying the opacity of the text.
Range 0 (invisible) to 255 (fully opaque).

For example, if we have already created a text resource with an ID of 1, then we can
display that text in opaque black using the line:

 SetTextColor(1,0,0,0,255)

FIG-7.74

CreateText() ()

integer

id

Version 1

, string

Version 2

()CreateText string

CreateText

FIG-7.75

SetTextColor()

()SetTextColor id , red , green , blue alpha,

274 Hands On AppGameKit Studio Volume 1: A First Look at Resources

SetTextPosition()

By default, text will appear in the top left corner of the app window. To position it
elsewhere we need to use the SetTextPosition() statement which has the format
shown in FIG-7.76).

where:

id is the integer value previously assigned as the ID of the
text to be moved.

x,y are real values giving the new coordinates for the
specified text resource. This will be in virtual pixels or
percentages depending on the coordinate system defined
when the app window was created.

A text resource whose ID value is 1 could be placed at the centre of the app window
using the statement:

 SetTextPosition(1,50,50)

The position (50,50) refers to the top left part of the text (see FIG-7.77).

SetTextAlignment()

By default, the text position specifies where the top left corner of the text is to be
positioned. This is known as left-aligned text. But it is possible to modify this so that
the top-right corner of the text is placed at the specified position (right-aligned text).
Finally, we can have centre-aligned text, with the top-centre of the text being placed
at the specified position. FIG-7.78 shows the effect of each alignment option.

FIG-7.76

SetTextPosition()

()SetTextPosition id , x , y

FIG-7.77

Positioning a Text
Resource

Hello world

50%

50%

FIG-7.78

Alignment Options

Hello world

Hello world

Hello world

Left Alignment

Centre Alignment

Right Alignment

Alignment about
this x-coord value

Hands On AppGameKit Studio Volume 1: A First Look at Resources 275

To change from the default left-aligned text, use the SetTextAlignment() statement
(see FIG-7.79).

where:

id is an integer value giving the ID of the text resource.

align is an integer value (0, 1 or 2) which gives the alignment
to be used (0: left-alignment, 1: centre-alignment, 2:
right-alignment). The default is zero.

GetTextAlignment()

To discover the current text alignment setting of a text resource we can call the
function GetTextAlignment() (see FIG-7.80).

where:

id is an integer value giving the ID of the text whose
current alignment is to be found.

The function will return 0 (left-aligned), 1 (centre-aligned) or 2 (right aligned).

SetTextSize()

The size of the text can be adjusted using the SetTextSize() statement (see FIG-
7.81).

where:

id is the integer value previously assigned as the ID of the
text to be resized.

size is a real value specifying the height of the characters
within the text. This is measured in percentage or virtual
pixels depending on the setup. The width is calculated
automatically.

The default size for all text output is 4.

The characters displayed in a text resource are created using an image of the character
set. As the text is made larger, so the low resolution of the image used by the old-style

FIG-7.79

SetTextAlignment()

()SetTextAlignment id align

Activity 7.27

Start a new project called TextAlignment and display three instances of the
words “Hello world” each with a different alignment. Set the x coordinate to 50
for all three text resources.

FIG-7.80

GetTextAlignment()

()idinteger GetTextAlignment

FIG-7.81

SetTextSize()

()SetTextSize id , size

276 Hands On AppGameKit Studio Volume 1: A First Look at Resources

text option becomes more obvious creating a slightly blurred look to the text.

We could change the size of the text displayed by text resource 1 from the default 4
units to 6 units using the statement:

 SetTextSize(1,6)

SetTextString()

The actual text contained within a text resource can be changed using the
SetTextString() statement (see FIG-7.82).

where:

id is the integer value giving the text’s ID.

string is the new string to be assigned to the text resource.

SetTextVisible()

We can hide a text resource or make it reappear using the SetTextVisible()
statement (see FIG-7.83).

where:

id is the integer value previously assigned as the ID of the
text resource to be operated on.

visible is an integer value (0 or 1) used to hide or display the
text. (0 - hidden ; 1 - visible)

GetTextVisible()

To discover if a text resource is currently visible, we can use the GetTextVisible()
statement which has the format shown in FIG-7.84.

where:

id is the integer value previously assigned as the ID of the
text.

The function returns 1 if the text is visible, 0 if it is not.

DeleteText()

When a text resource is no longer required, it should be deleted, thereby freeing up
memory resources. This is done using the DeleteText() statement (see FIG-7.85).

FIG-7.82

SetTextString() ()SetTextString id string

FIG-7.83

SetTextVisible() ()SetTextVisible id visible

FIG-7.84

GetTextVisible()

()GetTextVisible idinteger

FIG-7.85

DeleteText()

()idDeleteText

Hands On AppGameKit Studio Volume 1: A First Look at Resources 277

where:

 id is an integer value giving the ID of the text resource to be
 deleted from the program.

DeleteAllText()

If our program contains several text resources and we wish to remove all of them, use
DeleteAllText() (see FIG-7.86).

Using a Text Resource
The program in FIG-7.87 is an extension of the previous SpriteOver project with a
text object above each sprite indicating whether that sprite is visible or not.

FIG-7.86

DeleteAllText() ()DeleteAllText

FIG-7.87

Using a Text Resource

// Project: SpriteOver
// Created: 2015-01-17

//*** Set window title and size ***
SetWindowTitle(“Sprite Over”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)

//*** Set screen background to grey ***
SetClearColor(120,120,120)
ClearScreen()

//*** Load images required ***
ball_img = LoadImage(“Ball.png”)
poppy_img = LoadImage(“Poppy.png”)

//*** Create, size and position ball sprite ***
ball_spr = CreateSprite(ball_img)
SetSpriteSize(ball_spr, 10,-1)
SetSpritePosition(ball_spr, 20, 33)

//*** Create, size and position poppy sprite ***
poppy_spr = CreateSprite(poppy_img)
SetSpriteSize(poppy_spr, 15,-1)
SetSpritePosition(poppy_spr, 60, 30)

//*** Use vector text ***
UseNewDefaultFonts(1)
//*** Create text over ball ***
ball_txt = CreateText(“Visible”)
SetTextPosition(ball_txt, 20, 20)

//*** Create text over poppy ***
poppy_txt = CreateText(“Visible”)
SetTextPosition(poppy_txt, 60, 20)
do
 //*** If pointer pressed ***
 if GetPointerPressed() = 1
 //*** Get ID of any sprite under pointer ***
 spr_hit = GetSpriteHit(GetPointerX(),GetPointerY())

278 Hands On AppGameKit Studio Volume 1: A First Look at Resources

Summary
■ Using a text resource allows us to control attributes of a string.

■ The string within a text resource can be modified, resized, positioned,
coloured, and made transparent.

■ Use UseNewDefaultFonts() to use a vector-based rather than image-based
font style.

■ Use CreateText() to create a text resource.

■ Use SetTextColor() to set the colour of a specified text resource.

■ Use SetTextPosition() to position a specified text resource on the screen.

■ By default, the position specified in SetTextPosition() is applied to the top-
left corner of the text.

■ Use SetTextAlignment() to change the default left alignment to right or
centre alignment.

■ Use GetTextAlignment() to discover the alignment setting of a text resource.

■ By default, text is white.

■ Use SetTextSize() to set the size of a specified text resource.

FIG-7.87
(continued)

Using a Text Resource

 //*** If a sprite is under pointer ***
 if spr_hit <> 0
 //*** toggle its visibility ***
 SetSpriteVisible(spr_hit,1-GetSpriteVisible(spr_hit))
 //*** If it’s the ball ***
 if spr_hit = ball_spr
 //*** Set ball text ***
 if GetSpriteVisible(spr_hit) = 1
 SetTextString(ball_txt,”Visible”)
 else
 SetTextString(ball_txt, “Invisible”)
 endif
 else // it’s the poppy
 //*** Set the poppy text ***
 if GetSpriteVisible(spr_hit) = 1
 SetTextString(poppy_txt,”Visible”)
 else
 SetTextString(poppy_txt, “Invisible”)
 endif
 endif
 endif
 endif
 Sync()
loop

Activity 7.28

Modify SpriteOver to match the code given in FIG-7.87.

Test the program, checking that each text correctly reflects the state of the
sprite.

Hands On AppGameKit Studio Volume 1: A First Look at Resources 279

■ Use SetTextString() to change the text held in a text resource.

■ Use SetTextVisible() to set a specified text resource invisible/visible.

■ Use GetTextVisible() to determine if a specified text resource is visible.

■ Use DeleteText() to delete a specified text resource.

■ Use DeleteAllText() to delete all text resources.

280 Hands On AppGameKit Studio Volume 1: A First Look at Resources

Solutions
Activity 7.1

Most tablets and phones assume a portrait mode setup, so the
width value will be less than the height.

The values from a mobile device do not change when it is
turned to a different orientation.

Activity 7.2
Modified code for ScreenSize:

// Project: ScreenSize
// Created: 2015-01-23

//*** Window title and size ***
SetWindowTitle(“Screen Size”)
SetWindowSize(1024,500,0)
SetDisplayAspect(1024/500.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Get screen dimensions ***
screenwidth = GetMaxDeviceWidth()
screenheight = GetMaxDeviceHeight()

//*** Get window dimensions ***
windowwidth = GetDeviceWidth()
windowheight = GetDeviceHeight()

do
 //*** Display actual dimensions ***
 PrintC(“Screen width: “)
 PrintC(screenwidth)
 PrintC(“ pixels Screen height: “)
 PrintC(screenheight)
 Print(“ pixels”)
 //*** Display window dimensions ***
 PrintC(“Window width: “)
 PrintC(windowwidth)
 PrintC(“ pixels Window height: “)
 PrintC(windowheight)
 Print(“ pixels”)
 Sync()
loop

The screen and window sizes are identical when the app is
run on a portable device.

Activity 7.3
Code for PercentPixel:

// Project: PercentPixel
// Created: 2015-01-24

//*** Window title and size ***
SetWindowTitle(“Percent/Pixel”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Calculate pixels per percent ***
one_percent_x# = GetDeviceWidth()/100.0
one_percent_y# = GetDeviceHeight()/100.0

//*** Calulate percent per pixel ***
xpixel# = 100.0/GetDeviceWidth()
ypixel# = 100.0/GetDeviceHeight()

do
 //*** Calculate 1% in pixels ***
 PrintC(“1% in the x direction is “)
 PrintC(one_percent_x#)
 Print(“ pixels”)
 PrintC(“1% in the y direction is “)
 PrintC(one_percent_y#)
 Print(“ pixels”)

 //*** Calculate 1 pixel as % ***
 PrintC(“1 pixel represents “)
 PrintC(xpixel#)
 Print(“% in the x direction”)
 PrintC(“1 pixel represents “)
 PrintC(ypixel#)
 Print(“% in the y direction”)
 Sync()
loop

Activity 7.4
Modified code for TestDrawLine:

// Project: TestDrawLine
// Created: 2015-01-23

//*** Window title and size ***
SetWindowTitle(“Test DrawLine”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
//*** Create colour values ***
red = MakeColor(255,0,0)
yellow = MakeColor(255,255,0)

do
 //*** Draw a line from top-left to bottom-right

 DrawLine(0,0,100,100,red, yellow)
 Sync()
loop

Activity 7.5
Modified code for Rectangles:

// Project: Rectangles
// Created: 2015-01-23

//*** Window title and size ***
SetWindowTitle(“Rectangles”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()
do
 //*** Create random colour values ***
 col1 = MakeColor(Random(0,255),Random(0,255),
 Random(0,255))
 col2 = MakeColor(Random(0,255),Random(0,255),
 Random(0,255))
 col3 = MakeColor(Random(0,255),Random(0,255),
 Random(0,255))
 col4 = MakeColor(Random(0,255),Random(0,255),
 Random(0,255))
 //*** Draw rectangle ***
 DrawBox(10,10,90,90,col1,col2,col3,col4,1)
 Sync()
 Sleep(500)
loop

Activity 7.6
Modified code for Ecllipses:

// Project: Ellipses
// Created: 2015-01-14

//*** Window title and size ***
SetWindowTitle(“Ellipses”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Calculate how many pixels in 20% x direction
xpixels# = 20* GetDeviceWidth()/100

//*** Calculate % in y direction for same number of
pixels ***
ypercentage# = xpixels#/GetDeviceHeight() *100

do
 //*** Draw circle ***

Hands On AppGameKit Studio Volume 1: A First Look at Resources 281

 DrawEllipse(50,50,20,ypercentage#,
 MakeColor(Random(0,255), Random(0,255),
 Random(0,255)),MakeColor(Random(0,255),
 Random(0,255), Random(0,255)),1)
 Sync()
 Sleep(500)
loop

Activity 7.7
When the parameter to SetErrorMode() is zero, then the
program has no obvious reaction to the fact that the specified
file cannot be found.

With the parameter set to 1, the message "Error: Could not
find image: nofile.png in main.agc at line 17" is displayed
in the Message page (at the bottom of the screen). This
message only appears when running in debug mode. Using
the standard run option, the program executes without an
error message.

With the parameter set to 2, the program terminates with the
message box shown below:

Activity 7.7
Although the image is only 128 x 128 pixels it appears much
larger within the app window.

Activity 7.8
Modified code for FirstSprite:

// Project: FirstSprite
// Created: 2015-01-16

//*** Set window title and size ***
SetWindowTitle(“First Sprite”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Load image ***
LoadImage(1, “Ball.png”)

//*** Create sprite ***
CreateSprite(1,1)

//*** Resize sprite ***
SetSpriteSize(1,50,50)

do
 Sync()
loop

The sprite now occupies 50% of the width and height of the
app window. Because the app window is not square, this
means that the ball is not perfectly round.

Activity 7.9
The line

 SetSpriteSize(1,50,50)

should first be changed to
SetSpriteSize(1,50,50*GetDisplayAspect())

then to
SetSpriteSize(1,50,-1)

The ball will be round and the same size for both options.

 On the next run the line should now read
SetSpriteSize(1,-1,50)

which will make the round ball’s size 50% of the app
window’s height. But, because the window is not as tall as it
is wide, the ball will be smaller than before.

Activity 7.10
Modified code for FirstSprite:

// Project: FirstSprite
// Created: 2015-01-16

//*** Set window title and size ***
SetWindowTitle(“First Sprite”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Load image ***
LoadImage(1, “Ball.png”)

//*** Create sprite ***
CreateSprite(1,1)

//*** Resize sprite ***
SetSpriteSize(1,-1,10)

//*** Display the sprite ***
Sync()

//*** Wait two seconds ***
Sleep(2000)

//*** Move the sprite to (50,50) ***
SetSpritePosition(1,50,50)

do
 Sync()
loop

Activity 7.11
Modified code for FirstSprite:

// Project: FirstSprite
// Created: 2015-01-16

//*** Set window title and size ***
SetWindowTitle(“First Sprite”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Load image ***
LoadImage(1, “Ball.png”)

//*** Create sprite ***
CreateSprite(1,1)

//*** Resize sprite ***
SetSpriteSize(1,-1,10)

//*** Display the sprite ***
Sync()

//*** Wait two seconds ***
Sleep(2000)

//*** Move the sprite across screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
next p

do
 Sync()

282 Hands On AppGameKit Studio Volume 1: A First Look at Resources

loop

Activity 7.12
Modified code for FirstSprite:

// Project: FirstSprite
// Created: 2015-01-16

//*** Set window title and size ***
SetWindowTitle(“First Sprite”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Load image ***
LoadImage(1, “Ball.png”)

//*** Create sprite ***
CreateSprite(1,1)

//*** Resize sprite ***
SetSpriteSize(1,-1,10)

//*** Display the sprite ***
Sync()

//*** Wait two seconds ***
Sleep(2000)

//*** Move the sprite across screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 //*** and display its position ***
 PrintC(“Spite’s position: “)
 PrintC(“(“)
 PrintC(GetSpriteX(1))
 PrintC(“, “)
 PrintC(GetSpriteY(1))
 Print(“)”)
 Sync()
next p

do
 Sync()
loop

Activity 7.13
Modified code for SpriteDepth:

// Project: SpriteDepth
// Created: 2015-01-16

//*** Set window title and size ***
SetWindowTitle(“Sprite Depth”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Load images ***
ball_img = LoadImage(“Ball.png”)
poppy_img = LoadImage(“Poppy.png”)

//*** Create ball sprite ***
ball_spr = CreateSprite(ball_img)
SetSpriteSize(ball_spr,10,-1)

//*** Create poppy sprite on layer 9 ***
poppy_spr = CreateSprite(poppy_img)
SetSpriteSize(poppy_spr,20,-1)
SetSpritePosition(poppy_spr,40,40)
SetSpriteDepth(poppy_spr,9)

do
 //*** Move ball sprite across the screen ***
 for p = 1 to 100
 SetSpritePosition(ball_spr,p,p)
 Sync()
 next p
loop

Activity 7.14
To have the ball pass over the poppy all that is required is to
move the poppy to a lower layer by modifying the following

section of code in SpriteDepth:
//*** Create poppy sprite on layer 11 ***
poppy_spr = CreateSprite(poppy_img)
SetSpriteSize(poppy_spr,20,-1)
SetSpritePosition(poppy_spr,40,40)
SetSpriteDepth(poppy_spr,11)

Activity 7.15
Modified code for SpriteDepth:

// Project: SpriteDepth
// Created: 2015-01-16

//*** Set window title and size ***
SetWindowTitle(“Sprite Depth”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Load images ***
ball_img = LoadImage(“Ball.png”)
poppy_img = LoadImage(“Poppy.png”)

//*** Create ball sprite ***
ball_spr = CreateSprite(ball_img)
SetSpriteSize(ball_spr,10,-1)

//*** Create poppy sprite on layer 8 ***
poppy_spr = CreateSprite(poppy_img)
SetSpriteSize(poppy_spr,20,-1)
SetSpritePosition(poppy_spr,40,40)
SetSpriteDepth(poppy_spr,8)

//*** Create a poppy clone ***
poppy2_spr = CloneSprite(poppy_spr)
SetSpritePosition(poppy2_spr,20,20)

//*** Do nothing ***
do
 //*** Move ball sprite across the screen ***
 for p = 1 to 100
 SetSpritePosition(ball_spr,p,p)
 Sync()
 next p
loop

The ball appears behind both poppies.

Activity 7.16
Modified code for SpriteDepth:

// Project: SpriteDepth
// Created: 2015-01-16

//*** Set window title and size ***
SetWindowTitle(“Sprite Depth”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)
ClearScreen()

//*** Load images ***
ball_img = LoadImage(“Ball.png”)
poppy_img = LoadImage(“Poppy.png”)

//*** Create ball sprite ***
ball_spr = CreateSprite(ball_img)
SetSpriteSize(ball_spr,10,-1)

//*** Create poppy sprite on layer 8 ***
poppy_spr = CreateSprite(poppy_img)
SetSpriteSize(poppy_spr,20,-1)
SetSpritePosition(poppy_spr,40,40)
SetSpriteDepth(poppy_spr,8)

//*** Create a poppy clone ***
poppy2_spr = CloneSprite(poppy_spr)
SetSpritePosition(poppy2_spr,20,20)

do
 //*** Move ball sprite across the screen ***
 for p = 1 to 100
 SetSpritePosition(ball_spr,p,p)
 Sync()
 next p

Hands On AppGameKit Studio Volume 1: A First Look at Resources 283

 //*** Make poppies invisible ***
 SetSpriteVisible(poppy_spr,0)
 SetSpriteVisible(poppy2_spr,0)
loop

Activity 7.17
No solution required.

Activity 7.18
Modified code for RotateSprite:

// Project: RotateSprite
// Created: 2015-02-26

//*** Set window size and title ***
SetWindowSize(1024,768,0)
SetWindowTitle(“Rotate a Sprite”)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)

//*** Clear the screen to grey ***
SetClearColor(200,200,200)
ClearScreen()

//*** Set up sprite ***
img = LoadImage(“Arrow.png”)
spr = CreateSprite(img)
SetSpriteSize(spr,20,-1)
SetSpritePosition(spr,40,50)

//*** Display rotating sprite and its angle ***
do
 for angle = 0 to 359
 SetSpriteAngle(spr,angle)
 Print(GetSpriteAngle(spr))
 Sync()
 next angle
loop

The sprite rotates about its centre.

Activity 7.19
Modified code for RotateSprite:

// Project: RotateSprite
// Created: 2015-02-26

//*** Set window size and title ***
SetWindowSize(1024,768,0)
SetWindowTitle(“Rotate a Sprite”)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)

//*** Clear the screen to grey ***
SetClearColor(200,200,200)
ClearScreen()

//*** Set up sprite ***
img = LoadImage(“Arrow.png”)
spr = CreateSprite(img)
SetSpriteSize(spr,20,-1)
SetSpritePosition(spr,40,50)

//*** Move sprite offset to centre left ***
SetSpriteOffset(spr, 0, GetSpriteHeight(spr)/2)

//*** Display rotating sprite and its angle ***
do
 for angle = 0 to 359
 SetSpriteAngle(spr,angle)
 Print(GetSpriteAngle(spr))
 Sync()
 next angle
loop

Activity 7.20
Modified code for RotateSprite:

// Project: RotateSprite
// Created: 2015-02-26

//*** Set window size and title ***
SetWindowSize(1024,768,0)

SetWindowTitle(“Rotate a Sprite”)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)

//*** Clear the screen to grey ***
SetClearColor(200,200,200)
ClearScreen()

//*** Set up sprite ***
img = LoadImage(“Arrow.png”)
spr = CreateSprite(img)
SetSpriteSize(spr,20,-1)
SetSpritePosition(spr,40,50)

//*** Move sprite offset to centre left ***
SetSpriteOffset(spr, 0, GetSpriteHeight(spr)/2)

//*** Display rotating sprite and its offset ***
do
 for angle = 0 to 359
 SetSpriteAngle(spr,angle)
 Print(GetSpriteXByOffset(spr)-GetSpriteX(spr))
 Print(GetSpriteYByOffset(spr)-GetSpriteY(spr))
 Sync()
 next angle
loop

Activity 7.21
No solution required.

Activity 7.22
Modified code for UserInteraction:

// Project: UserInteraction
// Created: 2015-01-17

//*** Set window title and size ***
SetWindowTitle(“User Interaction”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
ClearScreen()

do
 //*** Check for held down ***
 if GetPointerState()=1
 Print(“Press held”)
 else
 Print(“No press”)
 endif
 Sync()
loop

Activity 7.23
Within a window, the point(0,0) can be reached, but the
other limit cannot. Testing on a Windows 7 machine gave a
maximum of around (99.9, 99.9).

On a tablet, the value of the bottom right maybe greater than
(100,100) because the point pressed is outside the area of the
screen used by the app if it is to maintain the stated aspect
ratio.

Activity 7.24
Modified code for PointerPosition:

// Project: PointerPosition
// Created: 2015-01-17

//*** Set window title and size ***
SetWindowTitle(“Pointer Position”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)

//*** Clear the screen to dark grey ***
SetClearColor(200,200,200)
ClearScreen()

do
 //*** If pressed, record position ***
 if GetPointerPressed() = 1

284 Hands On AppGameKit Studio Volume 1: A First Look at Resources

 x# = GetPointerX()
 y# = GetPointerY()
 endif
 //*** Display coordinates of latest press ***
 PrintC(“(“)
 PrintC(x#)
 PrintC(“,”)
 PrintC(y#)
 Print(“)”)
 Sync()
loop

Activity 7.25
Modified code for SpriteOver:

// Project: SpriteOver
// Created: 2015-01-17

//*** Set window title and size ***
SetWindowTitle(“Sprite Over”)
SetWindowSize(1024,720,0)
SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)

//*** Set screen background to grey ***
SetClearColor(120,120,120)
ClearScreen()

//*** Load images required ***
ball_img = LoadImage(“Ball.png”)
poppy_img = LoadImage(“Poppy.png”)

//*** Create, size and position ball sprite ***
ball_spr = CreateSprite(ball_img)
SetSpriteSize(ball_spr, 10,-1)
SetSpritePosition(ball_spr, 20, 33)

//*** Create, size and position poppy sprite ***
poppy_spr = CreateSprite(poppy_img)
SetSpriteSize(poppy_spr, 15,-1)
SetSpritePosition(poppy_spr, 60, 30)

do
 //*** If mouse pressed or screen touched ***
 if GetPointerPressed() = 1
 //*** Get ID of any sprite under pointer ***
 spr_hit =
 GetSpriteHit(GetPointerX(),GetPointerY())
 //*** If a sprite is under pointer, hide it ***
 if spr_hit <> 0
 SetSpriteVisible(spr_hit,0)
 endif
 endif
 Sync()
loop

Activity 7.26
To have the sprites disappear/appear as they are clicked,
change the last if statement in SpriteOver from

//*** If a sprite is under pointer, hide it ***
if spr_hit <> 0
 SetSpriteVisible(spr_hit,0)
endif

to

//*** If a sprite is under pointer, invert it
visibility it ***
if spr_hit <> 0
 SetSpriteVisible(spr_hit,1-GetSpriteVisible(
 spr_hit))
endif

Activity 7.27
Code for TextAlignment:

// Project: TextAlignment
// Created: 2015-08-24

//*** Set window title and size ***
SetWindowTitle(“Text Alignment”)
SetWindowSize(1024,720,0)

SetDisplayAspect(1024/720.0)
UseNewDefaultFonts(1)

//*** Set screen background to grey ***
SetClearColor(120,120,120)
ClearScreen()

//*** Display the text ***
CreateText(1,”Hello world”)
SetTextPosition(1,50,12)
CreateText(2,”Hello world”)
SetTextAlignment(2,2)
SetTextPosition(2,50,20)
CreateText(3,”Hello world”)
SetTextAlignment(3,1)
SetTextPosition(3,50,28)

do
 Sync()
loop

Activity 7.28
No solution required.

Hands On AppGameKit Studio Volume 1: Spot the Difference Game 285

Spot the Difference Game

In this Chapter:

T Designing a Game

T Game Documentation

T Designing Screen Layouts

T State Diagrams

T Incremental Builds

T Game Testing

286 Hands On AppGameKit Studio Volume 1: Spot the Difference Game

Game - Spot the Difference

Introduction
At last we know enough AGK BASIC to create a first game.

The game we are going to create in this chapter is a 21st century update on the spot-
the-difference game so beloved of many magazines. Two almost identical images are
displayed side-by-side and the challenge for the player is to spot the differences
between the two images.

There will have to be some compromises in the features included in the game and,
more importantly, in the structure of our program since there is still much to learn
about good program design. However, we will return to this project briefly in other
chapters to correct its shortcomings.

Game Design
When creating a game, there are many aspects of that game that we have to think
about before we start to write program code.

Since this is a computer game derived from an existing paper-based one, we don’t
have to worry about supplying an in-depth description of the game, defining the rules
or stating how the game is won. But these are details that should be created for any
new concept game.

On the other hand, we still need to design the screen layout for the game. In fact, there
may be several layouts to design: a start-up splash screen, the main game screen, an
end-game screen and a credits screen detailing all those involved in the game
development. Not only the overall screen designs need to be considered, but also the
design of any individual sprites that may appear during the game play.

Any background music and sound effects not only have to be created, but when these
are to be played also needs to be specified (although we will not be including sounds
or music at this stage).

User interaction methods and help options are other aspects that have to be considered.
How is the user to learn the rules of the game? Do we add an accompanying video
tutorial, write a user manual, or include detailed help features within the game?

Game Description

In our game, the player is presented with two almost identical images. The left-hand
image is the original image; the right-hand image has six modifications. The aim of
the game is for the player to click (or press) on the areas of the right-hand image that
differ from those in the left-hand image.

The time elapsed since the start of the game is continually displayed.

The player wins by correctly clicking on all six differences and the total time taken
(in seconds) is displayed. If all six differences have not been found within 2 minutes
or the player has made more than 8 clicks, then the game finishes and a display states
that the player has lost and gives the reason for the defeat.

Hands On AppGameKit Studio Volume 1: Spot the Difference Game 287

Screen Layouts

Before we start on the screen layout design, we need to decide on the screen orientation
to be used by the game – portrait or landscape. In this game, because we want to have
the two differing images side-by-side, our best choice is landscape, so we need to
design our screen layouts accordingly.

This game will have five screen layouts: splash screen, main game screen, finish
screen (Win), finish screen (Lose) and credits screen.

We may want to create a rough drawing of the various screen layouts before going
on to create a more detailed design using a drawing or paint package.

Another important point at this stage is to consider the screen size and resolution of
the device(s) on which we want the game to run. Although AGK will allow our game
to run on almost any platform, we may still want to consider how the screen size will
affect the playability of our game. For example, 10 buttons along the right-hand edge
of an iPad looks fine, but try the same thing on an iPhone and only the smallest of
fingers will be able to use the buttons easily!

Image resolution is also important. A 1024 x 768 image will look fine on a device
with the resolution of the original iPad, but it may not look so sharp on a later 2048
x 1536 screen. But, then again, higher resolution images require more memory and
more processing power to display or move.

For this game, the screen layouts have been designed using Adobe Illustrator which
is a vector-drawing package. The great advantage of a vector-based image is that it
can be converted to a regular bitmap image of any size and always produce the best
possible quality image.

The splash screen (filename : Splash.jpg) is shown in FIG-8.1.

The splash screen image is held as a single JPEG image. Note that it includes the
name of the game, the company name (Digital Skills), and the Digital Skills website
address. Always publicise your company!

FIG-8.1

The Splash Screen pot the Difference

www.digital-skills.co.uk

Digital Skills

288 Hands On AppGameKit Studio Volume 1: Spot the Difference Game

The second image (see FIG-8.2) is of the game screen containing the two photographs
that form the game.

The photographs themselves are not separate entities but part of the single overall
image. Note that the top right corner leaves a gap where the time elapsed since the
start of the game is to be displayed in real-time.

The third image is the end screen displayed when the player wins. This shows the
total time taken in seconds (see FIG-8.3).

Again, we can see that a space has been left for the actual number of seconds taken
to find all the differences. In addition, this screen also shows a separate button sprite
in the bottom-right which allows the user to view the credits screen if required.

This screen might also show a New Game button, but since this game only offers a
single pair of images, there’s no need for a replay option.

FIG-8.2

The Main Screen pot the Difference

Original Press on the 6 Di�erences

Time :

FIG-8.3

The Win End Screen pot the Difference

You found all 6 di�erences in:

 seconds

Credits

Hands On AppGameKit Studio Volume 1: Spot the Difference Game 289

The fourth image appears when the player loses the game – either by timing out or
by clicking on the image too often (see FIG-8.4).

The final image (see FIG-8.5) shows the names of those involved in creating the
various aspects of the game: graphics, code, music.

A final visual component is the ring which appears around the differences in the
photograph when the player presses in the correct area. Although there will be six of
these, all make use of the same image (see FIG-8.6).

Other Resources

Typical other resources are sound, music and even video elements. Like the images,
these have to be created. However, our game has none of these additional elements.

FIG-8.4

The Lose End Screen pot the Difference

Sorry!
You failed to spot
all the differences

�
Despite what the
Credits pages
states, there is no
music!

FIG-8.5

The Credits Screen pot the Difference

Credits

©2011- 2015 Digital Skills

Coding Alistair Stewart

Alistair Stewart
Music Emily Aurora Knight

Graphics

FIG-8.6

The Circle Spite

290 Hands On AppGameKit Studio Volume 1: Spot the Difference Game

Overall Game Document

A useful document to produce is one showing not only the four screen layouts but
also giving details of any sounds or actions that can occur during each stage of the
game (see FIG-8.7).

FIG-8.7

The Overall Game
Document

pot the Difference
Original Press on the 6 Di�erences

Time : xxx

Splash Screen

Main Screen

Win End Screen

Lose End Screen

Credits Screen

Shows circle over each
 correctly selected difference

Shows time game has been
 running

Displays total time taken to
 find all differences

4 secs elapsed
or
mouse pressed

120 secs elapsed
or
8 presses made
(all differences
not found)

All
differences
found

Credits button
pressed

1

2

3

4

5

4 secs
elapsed

pot the Difference

www.digital-skills.co.uk

Digital Skills

pot the Difference

You found all 6 di�erences in:

 seconds

Credits

pot the Difference

Sorry!
You failed to spot
all the differences

pot the Difference

Credits

©2011- 2015 Digital Skills

Coding Alistair Stewart

Alistair Stewart
Music Emily Aurora Knight

Graphics

xxx

Hands On AppGameKit Studio Volume 1: Spot the Difference Game 291

In the Main and Win End screen layouts X’s are used to indicate where text is to be
positioned, but the exact value of that text is unknown at the time of the design.

On the right of FIG-8.6 is a state-transition diagram. The numbered circles represent
the four different screen layouts. When each new screen appears during the game we
consider the game to have entered a new state. The lines between the circles represent
the moving from one state to another (i.e. from one screen to another). The text
beside the lines explains what causes the game to move from one state to another. So
we see that we move from the splash screen to the main game screen once an
unspecified amount of time has passed; we move from the main screen to the end
screen when all 6 differences have been found. Notice that we move to the credits
screen only if the Credits button is pressed and that we return from the credits screen
to the end screen after some time has elapsed.

For a more complex game, we might need to give greater detail for the design of each
screen and the individual sprites which may appear on that screen.

Copyright Issues

Of course, if we intend to create a game simply for the amusement of ourself and our
family, then making use of images we find on the internet, or adding our favourite
music to the game isn’t really a problem. However, should we wish to turn our game
into a commercial product then we must make sure all aspects of the game are either
copyright free, that we have permission from the copyright holder to use the material,
or that the material is entirely of our own creation.

Even if we created the photographs used in a game, we can still breach copyright. For
example, we can’t use someone’s image in a commercial product without their
approval. We can’t even use some buildings! If we were to use images taken in a
Disney park for example, we would probably have their lawyers on our doorstep
before we had made our first 10 sales!

Even if we record our own music, the melody itself may be copyrighted. Play and
write our own music to be on the safe side.

We mustn’t even borrow a one second sound effect without approval.

Don’t worry! There are websites which offer copyright free material - but check that
it can be used in a commercial product.

Finally, the images have no copyright problems, we have written and played the
music, created all the sound effects, so we must be safe now, right? Afraid not! If we
save our music in MP3 format, we’ll find another set of lawyers wanting to have a
few words. This time it won’t happen until we’ve sold 5000 copies of our game but
at that point we’ll have to hand over large sums of money for the privilege of using
the MP3 format. The way round this one is to use the OGG Vorbis format for our
music files. AGK will automatically look for a file in this format even when our code
specifies MP3.

And once we’ve made sure all our resources have no copyright issues, are we safe at
last to write our game? Well, not entirely. We can still be on the receiving end of a
legal communication if someone thinks we’ve ripped off their game idea or even if
our code makes use of some technique that has been copyrighted.

Have we given up all hope of creating a commercial game? Well, we can do a few
things to protect ourself from the unexpected legal challenge. One option is to set up

292 Hands On AppGameKit Studio Volume 1: Spot the Difference Game

a limited company and publish our games through that (it’s really not too complicated).
Using this method, only our company can be sued if the worst should happen - not
us. So we won’t have to sell our home and flash new car to pay all the legal claims
that have arrived on the doorstep.

And perhaps the easiest option of all is to let The Game Creators publish our game
for us. Okay they are going to want 30%, but on the other hand they will test our
game, suggest any changes, market it for us, even add revenue-gathering adverts and
organise the cut-down free version and the paid-for full version. Chances are we’ll
sell more copies through them than we would do on our own and even after giving
them their cut, we’ll still make more money. And perhaps best of all, they are legally
responsible - not us. Now, on with the game ...

Game Logic

The next stage is to do a high-level structured English description of the game.

The first level should be kept short:
 1 Set window size and font
 2 Display splash screen and start timer
 3 Load resources
 4 Remove splash screen
 5 Set up game screen
 6 Play game
 7 End game

More detail can be added to some of these using stepwise refinement:
 1 Set up window and font
 1.1 Create a window 1024 x 768
	 	 1.2	Set	window’s	title	to	“Spot	The	Difference	Game”
 1.3 Use vector-based font

 2 Display splash screen and start timer
	 	 2.1	Load	splash	screen	image	“Splash.jpg”
 2.2 Display image in sprite over full window
 2.3 Reset timer

 3 Load resources
	 	 3.1	Load	main	screen	image	“Main.jpg”
	 	 3.2	Load	finish(lose)	image	“FinishLose.jpg”
	 	 3.3	Load	finish(win)	image	“FinishWin.jpg”
	 	 3.3	Load	credits	image	“Credits.jpg”
	 	 3.4	Load	credits	button	image	“CreditButton.png”
	 	 3.5	Load	circle	image	“Circle.png”	

 4 Remove splash screen
	 	 4.1	WHILE	time	<	4	secs	AND	mouse	not	pressed	DO
	 	 4.2		ENDWHILE
 4.3 Delete splash screen sprite
 4.4 Delete splash screen image

 5 Set up game screen
 5.2 Display Main screen
	 	 5.3	Add	circles	over	differences
	 	 5.4	Hide	circles

 6 Play game
 6.1 Start timer display
	 	 6.2		Set	count	of	differences	found	to	zero
 6.3 Set count of button presses made to zero
	 	 6.4		REPEAT
	 	 6.5	 	 IF	mouse	button	pressed	THEN
	 	 6.6	 	 	 Increment	button	presses
	 	 6.7	 	 	 IF	user	selected	a	difference	THEN

�
The Game Creators no
longer offer this service,
though they may still
publish your game if
it really is something
special.

Hands On AppGameKit Studio Volume 1: Spot the Difference Game 293

 6.8 Show appropriate circle
	 	 6.9	 	 	 	 Increment	differences	found	count
	 	 6.10	 	 ENDIF
	 	 6.11	 ENDIF
 6.12 Update time
	 	 6.13	UNTIL	count	is	6	OR	8	presses	OR	time	>	120	secs
 6.14 Record the time
 6.15 Delete main screen resources

 7 End game
	 	 7.1		IF	all	6	differences	found	THEN
	 	 7.2	 	 Show	Win	End	Screen
 7.3 Display time taken
 7.4 Display Credits button
	 	 7.5			 DO
	 	 7.6			 	 IF	Credits	button	pressed	THEN
 7.7 Show Credits screen for 5 seconds
	 	 7.8			 	 ENDIF
	 	 7.9			 LOOP
 7.10 ELSE
 7.11 Display Lose End Screen
	 	 7.12	ENDIF

Game Code
The game code follows the logic given above. The first section loads and displays the
splash screen image.

Structured English:
1 Set window size

Code:
//**
//*** Program : Spot the Difference ***
//*** Version : 1.1 ***
//*** Author : A. Stewart ***
//*** Date : 3 Feb 2015 ***
//*** Language : AGK BASIC v2.10 ***
//*** Platform : PC Windows 10 ***
//*** Description: Displays two slightly ***
//*** differing images. The user ***
//*** has to click on the 6 ***
//*** differences within a time ***
//*** limit and using a limited ***
//*** number of clicks ***
//**

//*** Set window properties ***
SetWindowSize(1024, 768, 0)
SetWindowTitle(“Spot The Difference Game”)
UseNewDefaultFonts(1)
//*** Clear the screen ***
ClearScreen()

Notice that we have taken the time to add an introductory set of comments detailing
various aspects of the project including the author’s name, the language used, the
platform that the program is being tested on and a brief description of what the
program does.

Rather than wait until we have a complete program before we check if our code is
correct, a much better approach is to to test each section as it is coded. This is known
as an incremental build.

294 Hands On AppGameKit Studio Volume 1: Spot the Difference Game

With the first part of our structured English successfully converted to AGK BASIC,
we can now move on to the next statement in our outline.

Structured English:
 2 Display splash screen

Code:
//*** Display splash screen ***
splash_img = LoadImage(“Splash.jpg”)
splash_spr = CreateSprite(splash_img)
SetSpriteSize(splash_spr,100,100)
Sync()
//*** and reset timer ***
ResetTimer()

Structured English:
 3 Load resources

Code:
//*** Load resources ***
main_img = LoadImage(“Main.jpg”)
finwin_img = LoadImage(“FinishWin.jpg”)
finlose_img = LoadImage(“FinishLose.jpg”)
credits_img = LoadImage(“Credits.jpg”)
button_img = LoadImage(“CreditsButton.png”)
circle_img = LoadImage(“Circle.png”)

Activity 8.1

Start a new project called SpotTheDifference. Compile the default code so that
the project’s media folder is created.

From the book resources you downloaded earlier, copy the AGK/Resources/
Ch08 folder’s files to SpotTheDifference’s media folder. These files are:
Circle.png, Credits.jpg, CreditsButton.png, FinishLose.jpg, FinishWin.jpg,
Main.jpg, Splash.jpg.

Replace the code in main.agc with the code given above (change the author,
date and other appropriate details as required).

Finish the code with the lines:
 //*** Keep refreshing the screen ***
 do
 Sync()
 loop
Now run the program and check that a window is created.

Activity 8.2

Add the code given above to the appropriate place in main.agc.

Run the program and check that the splash screen appears and completely fills
the window.

Hands On AppGameKit Studio Volume 1: Spot the Difference Game 295

Structured English:
 4 Remove splash screen

Code:
//*** Remove splash screen ***
while timer() < 4 and GetPointerPressed() = 0
 Sync()
endwhile
DeleteSprite(splash_spr)
DeleteImage(splash_img)

Note that we need to add a Sync() statement within the while loop. This is required
not because we need the screen to be updated, but because the Sync() function carries
out other duties including detecting mouse button clicks.

Structured English:
 5 Set up game screen

Code:
//*** Set up game screen ***
main_spr = CreateSprite(main_img)
SetSpriteSize(main_spr,100,-1)
//*** Load circles at image differences ***
circle_spr1 = CreateSprite(circle_img)
SetSpriteSize(circle_spr1,-1,10)
SetSpritePosition(circle_spr1,91,86)
circle_spr2 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr2,51.5,22)
circle_spr3 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr3,49,68)
circle_spr4 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr4,73,66)
circle_spr5 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr5,88.5,66)
circle_spr6 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr6,55.75,62.5)
//*** Hide the circles ***
SetSpriteVisible(circle_spr1,0)
SetSpriteVisible(circle_spr2,0)

Activity 8.3

Add the code given above to the appropriate place in main.agc.

Run the program. Unfortunately, there’s no way at this stage to check that our
code is correct since these lines do not produce any output and, in the current
version of AGK BASIC (2.11), there is no check that the files have been
successfully loaded.

Activity 8.4

Add this latest code to the appropriate point in main.agc.

Run the program and check that the splash screen disappears after 4 seconds.

Run the program again and check that the splash screen is removed when the
mouse button is clicked.

296 Hands On AppGameKit Studio Volume 1: Spot the Difference Game

SetSpriteVisible(circle_spr3,0)
SetSpriteVisible(circle_spr4,0)
SetSpriteVisible(circle_spr5,0)
SetSpriteVisible(circle_spr6,0)

Since we’ll want to check that the circles are correctly positioned over the six
differences, we will need to comment out the last six lines of this new code. This will
keep the circles visible.

The next step in the logic is the most complicated one, so rather than use the level 1
logic, we’ll code this using the level to description.

Structured English:
 6.1 Start timer display

Code:
//*** Play game ***
//** Start timer display **
//* Reset the timer *
ResetTimer()
//* Set up timer text resource *
timer_txt = CreateText(str(GetSeconds()))
SetTextColor(timer_txt,0,0,0,255)
SetTextAlignment(timer_txt,2)
SetTextPosition(timer_txt,94,6)

Notice the use of the comments with two and one, rather than three asterisks. This is
done simply to remind us that these comments are a more detailed description of
parts of the main step – it’s the comments’ equivalent of level 2 and level 3 stepwise
refinement statements.

Structured English:
6.2		Set	count	of	differences	found	to	zero
6.3 Set count of button presses made to zero

Code:
//** Set count of differences found to zero **

Activity 8.5

Add this latest code to the appropriate point in main.agc.

Comment out the last six lines and run the program to check that the circles
are positioned correctly over the differences (some of the differences are quite
difficult to see).

Remove the comment characters and run the program again to make sure all six
circles have disappeared.

Activity 8.6

Add this latest code to the appropriate point in main.agc.

Run the program and check that a zero appears close to the text Time: in the
top-right corner.

Hands On AppGameKit Studio Volume 1: Spot the Difference Game 297

found = 0
//** Set count of button presses to zero **
clicks = 0

Since this won’t make any difference to what is displayed by the program, we’ll
convert more of our structured English before updating the program code again.

Structured English:
6.4			 REPEAT
6.5	 	 IF	mouse	button	pressed	THEN
6.6	 	 	 Increment	button	presses
6.7	 	 	 IF	user	selected	a	difference	THEN
6.8 Show appropriate circle
6.9	 	 	 	 Increment	differences	found	count
6.10	 	 	 ENDIF
6.11	 	 ENDIF
6.12 Update time
6.13	 	UNTIL	count	is	6	OR	8	presses	OR	time	>	120	secs
6.14 Record the time

Code:
repeat
 //** mouse button pressed **
 if GetPointerPressed() = 1
 //** Increment button presses **
 inc clicks
 //** If user selected a difference **
 //* Get ID of sprite hit *
 hit = GetSpriteHit(GetPointerX(),GetPointerY())
 //* If sprite hit is hidden circle *
 if hit >= circle_spr1 and hit <= circle_spr6 and
 GetSpriteVisible(hit) = 0
 //** Show appropriate circle **
 SetSpriteVisible(hit,1)
 //** Increment difference found count **
 inc found
 endif
 endif
 //** Update time **
 SetTextString(timer_txt,Str(GetSeconds()))
 //* Update the screen *
 Sync()
until found = 6 or clicks = 8 or GetSeconds() > 120
//** Record the time **
time_taken = GetSeconds()

The part of the code that checks that one of the circles has been clicked (hit >=
circle_spr1 and hit <= circle_spr6) makes use of the fact that AGK assigns
consecutive ID values to sprites. The final part of the same condition checks that the
hit is on an invisible circle, thereby ensuring the user can’t click twice on the same
circle.

Activity 8.7

Add the last two code conversions (for 6.2 to 6.13) to the appropriate point in
main.agc.

Run the program and check that the circles appear when clicked on.

298 Hands On AppGameKit Studio Volume 1: Spot the Difference Game

Structured English:
 6.14 Delete main screen resources

Code:
//** Delete main screen resources **
//* Delete circle sprites *
for c = circle_spr1 to circle_spr6
 DeleteSprite(c)
next c
//* Delete main screen sprite *
DeleteSprite(main_spr)
//* Delete the images used by these sprites *
DeleteImage(circle_img)
DeleteImage(main_img)
//* Delete time elapsed text resource *
DeleteText(timer_txt)
//* Update screen *
Sync()

Like step 6 in the structured English, step 7 is complex enough to warrant being
converted using the level 2 description:

Structured English:
7.1		IF	all	6	differences	found	THEN
7.2	 	 Show	Win	End	Screen
7.3 Display time taken
7.4 Display Credits button
7.5		 	 DO
7.6		 	 	 IF	Credits	button	pressed	THEN
7.7 Show Credits screen for 5 seconds
7.8		 	 	 ENDIF
7.9		 	 LOOP
7.10 ELSE
7.11 Display Lose End Screen
7.12	ENDIF

Code:
//** If all 6 differences found **
if found = 6
 //** Show Win End Screen **
 finwin_spr = CreateSprite(finwin_img)
 SetSpriteSize(finwin_spr,100,-1)
 //** Display time taken **
 totaltime_txt = CreateText(str(time_taken))
 SetTextColor(totaltime_txt,0,0,0,255)
 SetTextSize(totaltime_txt,5.5)
 SetTextAlignment(totaltime_txt,2)
 SetTextPosition(totaltime_txt,43,57.35)
 //** Display Credits button **
 button_spr = CreateSprite(button_img)
 SetSpriteSize(button_spr,15,-1)
 SetSpritePosition(button_spr,80,90)
 SetSpriteDepth(button_spr,9)

Activity 8.8

Add this latest code to the appropriate point in main.agc.

Run the program to check that the main screen display is removed.

Hands On AppGameKit Studio Volume 1: Spot the Difference Game 299

 do
 //** If Credits button pressed **
 if GetPointerPressed() = 1 and GetSpriteHit(GetPointerX()
 ,GetPointerY()) = button_spr
 //** Show credits screen for 5 seconds **
 credits_spr = CreateSprite(credits_img)
 SetSpriteSize(credits_spr,100,100)
 //* Credits screen placed over win screen *
 SetSpriteDepth(credits_spr,8)
 Sync()
 Sleep(5000)
 //* Remove Credits screen *
 DeleteSprite(credits_spr)
 endif
 Sync()
 loop
else
 //** Show Lose end screen **
 finlose_spr = CreateSprite(finlose_img)
 SetSpriteSize(finlose_spr,100,100)
 do
 Sync()
 loop
endif

The Credits screen is displayed “on top of” the End screen, so when it is deleted after
5 seconds, the End screen reappears.

In this chapter we’ve looked at how to create, size and position our sprites by using
the appropriate AGK commands. But AGKStudio also offers a drag and drop way of
laying out a scene using its Scene Editor. We’ll be looking at how to use that aid in
Chapter 26.

Activity 8.9

Add this latest code to the appropriate point in main.agc.

Run the program to check that the main screen display is removed.

300 Hands On AppGameKit Studio Volume 1: Spot the Difference Game

Solutions
Activity 8.1

The media folder should contain the following files:

 Circle.png
 Credits.jpg
 CreditsButton.png
 FinishLose.jpg
 FinishWin.jpg
 Main.jpg
 Splash.png

The complete program code in main.agc is:

//**
//*** Program : Spot the Difference ***
//*** Version : 1.1 ***
//*** Author : A. Stewart ***
//*** Date : 3 Feb 2015 ***
//*** Language : AGK BASIC v2.10 ***
//*** Platform : PC Windows 7 ***
//*** Description: Displays two slightly ***
//*** differing images. The user***
//*** has to click on the 6 ***
//*** differences within a time ***
//*** limit and using a limited ***

//*** number of clicks ***
//**

//*** Set window properties ***
SetWindowTitle(“Spot The Difference Game”)
SetWindowSize(1024, 768, 0)
UseNewDefaultFonts(1)
//*** Clear the screen ***
ClearScreen()

//*** Keep refreshing the screen ***
do
 Sync()
loop

The window should appear (size 1024 x 768) with the text
Spot The Difference Game in the title bar.

Activity 8.2
The program code in main.agc is (the initial block of
comments have been removed from the remaining solutions):

//*** Set window properties ***
SetWindowTitle(“Spot The Difference Game”)
SetWindowSize(1024, 768, 0)

//*** Clear the screen ***
ClearScreen()

//*** Display splash screen ***
splash_img = LoadImage(“Splash.jpg”)
splash_spr = CreateSprite(splash_img)
SetSpriteSize(splash_spr,100,100)
Sync()
//*** and reset timer ***
ResetTimer()

//*** Keep refreshing the screen ***
do
 Sync()
loop

Running the program should display the splash screen.

Activity 8.3
The program code in main.agc is:

//*** Set window properties ***
SetWindowTitle(“Spot The Difference Game”)

SetWindowSize(1024, 768, 0)

//*** Clear the screen ***
ClearScreen()

//*** Display splash screen ***
splash_img = LoadImage(“Splash.jpg”)
splash_spr = CreateSprite(splash_img)
SetSpriteSize(splash_spr,100,100)
Sync()
//*** and reset timer ***
ResetTimer()

//*** Load resources ***
main_img = LoadImage(“Main.jpg”)
finwin_img = LoadImage(“FinishWin.jpg”)
finlose_img = LoadImage(“FinishLose.jpg”)
credits_img = LoadImage(“Credits.jpg”)
button_img = LoadImage(“CreditsButton.png”)
circle_img = LoadImage(“Circle.png”)

//*** Keep refreshing the screen ***
do
 Sync()
loop

Running the program should display the splash screen as
before.

Activity 8.4
The program code in main.agc is:

//*** Set window properties ***
SetWindowTitle(“Spot The Difference Game”)
SetWindowSize(1024, 768, 0)
UseNewDefaultFonts(1)
//*** Clear the screen ***
ClearScreen()

//*** Display splash screen ***
splash_img = LoadImage(“Splash.jpg”)
splash_spr = CreateSprite(splash_img)
SetSpriteSize(splash_spr,100,100)
Sync()
//*** and reset timer ***
ResetTimer()

//*** Load resources ***
main_img = LoadImage(“Main.jpg”)
finwin_img = LoadImage(“FinishWin.jpg”)
finlose_img = LoadImage(“FinishLose.jpg”)
credits_img = LoadImage(“Credits.jpg”)
button_img = LoadImage(“CreditsButton.png”)
circle_img = LoadImage(“Circle.png”)

//*** Remove splash screen ***
while timer() < 4 and GetPointerPressed() = 0
 Sync()
endwhile
DeleteSprite(splash_spr)
DeleteImage(splash_img)
//*** Keep refreshing the screen ***
do
 Sync()
loop

Running the program should display the splash screen which
should disappear after 4 seconds or when the left mouse
button is pressed.

Activity 8.5
The program code in main.agc is:

//*** Set window properties ***
SetWindowTitle(“Spot The Difference Game”)
SetWindowSize(1024, 768, 0)
UseNewDefaultFonts(1)
//*** Clear the screen ***
ClearScreen()

//*** Display splash screen ***
splash_img = LoadImage(“Splash.jpg”)

Hands On AppGameKit Studio Volume 1: Spot the Difference Game 301

splash_spr = CreateSprite(splash_img)
SetSpriteSize(splash_spr,100,100)
Sync()
//*** and reset timer ***
ResetTimer()

//*** Load resources ***
main_img = LoadImage(“Main.jpg”)
finwin_img = LoadImage(“FinishWin.jpg”)
finlose_img = LoadImage(“FinishLose.jpg”)
credits_img = LoadImage(“Credits.jpg”)
button_img = LoadImage(“CreditsButton.png”)
circle_img = LoadImage(“Circle.png”)

//*** Remove splash screen ***
while timer() < 4 and GetPointerPressed() = 0
 Sync()
endwhile
DeleteSprite(splash_spr)
DeleteImage(splash_img)

//*** Show main screen ***
main_spr = CreateSprite(main_img)
SetSpriteSize(main_spr,100,-1)
//*** Load circles at image differences ***
circle_spr1 = CreateSprite(circle_img)
SetSpriteSize(circle_spr1,-1,10)
SetSpritePosition(circle_spr1,91,86)
circle_spr2 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr2,51.5,22)
circle_spr3 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr3,49,68)
circle_spr4 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr4,73,66)
circle_spr5 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr5,88.5,66)
circle_spr6 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr6,55.75,62.5)
//*** Hide the circles ***
SetSpriteVisible(circle_spr1,0)
SetSpriteVisible(circle_spr2,0)
SetSpriteVisible(circle_spr3,0)
SetSpriteVisible(circle_spr4,0)
SetSpriteVisible(circle_spr5,0)
SetSpriteVisible(circle_spr6,0)

//*** Keep refreshing the screen ***
do
 Sync()
loop

After showing the splash screen, the main screen is
displayed. With the circles still visible, the differences should
be highlighted as shown below.

Activity 8.6
The program code in main.agc is:

//*** Set window properties ***
SetWindowTitle(“Spot The Difference Game”)
SetWindowSize(1024, 768, 0)
UseNewDefaultFonts(1)
//*** Clear the screen ***
ClearScreen()

//*** Display splash screen ***
splash_img = LoadImage(“Splash.jpg”)
splash_spr = CreateSprite(splash_img)
SetSpriteSize(splash_spr,100,100)
Sync()
//*** and reset timer ***
ResetTimer()

//*** Load resources ***
main_img = LoadImage(“Main.jpg”)
finwin_img = LoadImage(“FinishWin.jpg”)
finlose_img = LoadImage(“FinishLose.jpg”)
credits_img = LoadImage(“Credits.jpg”)
button_img = LoadImage(“CreditsButton.png”)
circle_img = LoadImage(“Circle.png”)

//*** Remove splash screen ***
while timer() < 4 and GetPointerPressed() = 0
 Sync()
endwhile
DeleteSprite(splash_spr)
DeleteImage(splash_img)

//*** Show main screen ***
main_spr = CreateSprite(main_img)
SetSpriteSize(main_spr,100,-1)
//*** Load circles at image differences ***
circle_spr1 = CreateSprite(circle_img)
SetSpriteSize(circle_spr1,-1,10)
SetSpritePosition(circle_spr1,91,86)
circle_spr2 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr2,51.5,22)
circle_spr3 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr3,49,68)
circle_spr4 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr4,73,66)
circle_spr5 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr5,88.5,66)
circle_spr6 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr6,55.75,62.5)
//*** Hide the circles ***
SetSpriteVisible(circle_spr1,0)
SetSpriteVisible(circle_spr2,0)
SetSpriteVisible(circle_spr3,0)
SetSpriteVisible(circle_spr4,0)
SetSpriteVisible(circle_spr5,0)
SetSpriteVisible(circle_spr6,0)

/*** Play game ***
//** Start timer display **
//* Reset the timer *
ResetTimer()
//* Set up timer text resource *
timer_txt = CreateText(str(GetSeconds()))
SetTextColor(timer_txt,0,0,0,255)
SetTextAlignment(timer_txt,2)
SetTextPosition(timer_txt,94,6)

//*** Keep refreshing the screen ***
do
 Sync()
loop

The main screen should show the time elapsed value in
the top-left corner. This value will be zero and remain
unchanged.

Activity 8.7
The program code in main.agc is:

//*** Set window properties ***
SetWindowTitle(“Spot The Difference Game”)
SetWindowSize(1024, 768, 0)
UseNewDefaultFonts(1)
//*** Clear the screen ***
ClearScreen()

302 Hands On AppGameKit Studio Volume 1: Spot the Difference Game

//*** Display splash screen ***
splash_img = LoadImage(“Splash.jpg”)
splash_spr = CreateSprite(splash_img)
SetSpriteSize(splash_spr,100,100)
Sync()
//*** and reset timer ***
ResetTimer()

//*** Load resources ***
main_img = LoadImage(“Main.jpg”)
finwin_img = LoadImage(“FinishWin.jpg”)
finlose_img = LoadImage(“FinishLose.jpg”)
credits_img = LoadImage(“Credits.jpg”)
button_img = LoadImage(“CreditsButton.png”)
circle_img = LoadImage(“Circle.png”)

//*** Remove splash screen ***
while timer() < 4 and GetPointerPressed() = 0
 Sync()
endwhile
DeleteSprite(splash_spr)
DeleteImage(splash_img)

//*** Show main screen ***
main_spr = CreateSprite(main_img)
SetSpriteSize(main_spr,100,-1)
//*** Load circles at image differences ***
circle_spr1 = CreateSprite(circle_img)
SetSpriteSize(circle_spr1,-1,10)
SetSpritePosition(circle_spr1,91,86)
circle_spr2 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr2,51.5,22)
circle_spr3 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr3,49,68)
circle_spr4 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr4,73,66)
circle_spr5 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr5,88.5,66)
circle_spr6 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr6,55.75,62.5)
//*** Hide the circles ***
SetSpriteVisible(circle_spr1,0)
SetSpriteVisible(circle_spr2,0)
SetSpriteVisible(circle_spr3,0)
SetSpriteVisible(circle_spr4,0)
SetSpriteVisible(circle_spr5,0)
SetSpriteVisible(circle_spr6,0)

/*** Play game ***
//** Start timer display **
//* Reset the timer *
ResetTimer()
//* Set up timer text resource *
timer_txt = CreateText(str(GetSeconds()))
SetTextColor(timer_txt,0,0,0,255)
SetTextAlignment(timer_txt,2)
SetTextPosition(timer_txt,94,6)

//** Set count of differences found to zero **
found = 0
//** Set mouse button presses made to zero **
clicks = 0
repeat
 //** mouse button pressed **
 if GetPointerPressed() = 1
 //** Increment button presses **
 inc clicks
 //** If user selected a difference **
 //* Get ID of sprite hit *
 hit = GetSpriteHit(GetPointerX(),
 GetPointerY())
 //* If sprite hit is hidden circle *
 if hit >= circle_spr1 and hit <=circle_spr6
 and GetSpriteVisible(hit)=0
 //** Show appropriate circle **
 SetSpriteVisible(hit,1)
 //** Increment difference found count **
 inc found
 endif
 endif
 //** Update time **
 SetTextString(timer_txt,Str(GetSeconds()))
 //* Update the screen *
 Sync()
until found = 6 or clicks = 8 or GetSeconds() > 120
//** Record the time **
time_taken = GetSeconds()

//*** Keep refreshing the screen ***
do
 Sync()
loop

Now the time elapsed value will change every second and
when the user clicks on the changes the red circles appear.

Also, the game stops when 120 seconds has elapsed, when
8 selections have been made, or when all 6 differences are
found.

Activity 8.8
The complete program code in main.agc is:

//*** Set window properties ***
SetWindowTitle(“Spot The Difference Game”)
SetWindowSize(1024, 768, 0)
UseNewDefaultFonts(1)
//*** Clear the screen ***
ClearScreen()

//*** Display splash screen ***
splash_img = LoadImage(“Splash.jpg”)
splash_spr = CreateSprite(splash_img)
SetSpriteSize(splash_spr,100,100)
Sync()
//*** and reset timer ***
ResetTimer()

//*** Load resources ***
main_img = LoadImage(“Main.jpg”)
finwin_img = LoadImage(“FinishWin.jpg”)
finlose_img = LoadImage(“FinishLose.jpg”)
credits_img = LoadImage(“Credits.jpg”)
button_img = LoadImage(“CreditsButton.png”)
circle_img = LoadImage(“Circle.png”)

//*** Remove splash screen ***
while timer() < 4 and GetPointerPressed() = 0
 Sync()
endwhile
DeleteSprite(splash_spr)
DeleteImage(splash_img)

//*** Show main screen ***
main_spr = CreateSprite(main_img)
SetSpriteSize(main_spr,100,-1)
//*** Load circles at image differences ***
circle_spr1 = CreateSprite(circle_img)
SetSpriteSize(circle_spr1,-1,10)
SetSpritePosition(circle_spr1,91,86)
circle_spr2 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr2,51.5,22)
circle_spr3 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr3,49,68)
circle_spr4 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr4,73,66)
circle_spr5 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr5,88.5,66)
circle_spr6 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr6,55.75,62.5)
//*** Hide the circles ***
SetSpriteVisible(circle_spr1,0)
SetSpriteVisible(circle_spr2,0)
SetSpriteVisible(circle_spr3,0)
SetSpriteVisible(circle_spr4,0)
SetSpriteVisible(circle_spr5,0)
SetSpriteVisible(circle_spr6,0)

/*** Play game ***
//** Start timer display **
//* Reset the timer *
ResetTimer()
//* Set up timer text resource *
timer_txt = CreateText(str(GetSeconds()))
SetTextColor(timer_txt,0,0,0,255)
SetTextAlignment(timer_txt,2)
SetTextPosition(timer_txt,94,6)

//** Set count of differences found to zero **
found = 0
//** Set mouse button presses made to zero **
clicks = 0
repeat
 //** mouse button pressed **

Hands On AppGameKit Studio Volume 1: Spot the Difference Game 303

 if GetPointerPressed() = 1
 //** Increment button presses **
 inc clicks
 //** If user selected a difference **
 //* Get ID of sprite hit *
 hit = GetSpriteHit(GetPointerX(),
 GetPointerY())
 //* If sprite hit is hidden circle *
 if hit >= circle_spr1 and hit <=circle_spr6
 and GetSpriteVisible(hit)=0
 //** Show appropriate circle **
 SetSpriteVisible(hit,1)
 //** Increment difference found count **
 inc found
 endif
 endif
 //** Update time **
 SetTextString(timer_txt,Str(GetSeconds()))
 //* Update the screen *
 Sync()
until found = 6 or clicks = 8 or GetSeconds() > 120
//** Record the time **
time_taken = GetSeconds()

//** Record the time **
time_taken = GetSeconds()
//** Delete main screen resources **
//* Delete circle sprites *
for c = circle_spr1 to circle_spr6
 DeleteSprite(c)
next c
//* Delete main screen sprite *
DeleteSprite(main_spr)
//* Delete the images used by these sprites *
DeleteImage(circle_img)
DeleteImage(main_img)
//* Delete time elapsed text resource *
DeleteText(timer_txt)
//* Update screen *
Sync()

//*** Keep refreshing the screen ***
do
 Sync()
loop

When the game completes, all resources are destroyed and
we are left with a black window. Make sure this situation
arises for all three conditions which cause the game to finish
(120 secs, 8 clicks, 6 differences).

Activity 8.9
The complete program code in main.agc is:

//*** Set window properties ***
SetWindowTitle(“Spot The Difference Game”)
SetWindowSize(1024, 768, 0)
UseNewDefaultFonts(1)
//*** Clear the screen ***
ClearScreen()

//*** Display splash screen ***
splash_img = LoadImage(“Splash.jpg”)
splash_spr = CreateSprite(splash_img)
SetSpriteSize(splash_spr,100,100)
Sync()
//*** and reset timer ***
ResetTimer()

//*** Load resources ***
main_img = LoadImage(“Main.jpg”)
finwin_img = LoadImage(“FinishWin.jpg”)
finlose_img = LoadImage(“FinishLose.jpg”)
credits_img = LoadImage(“Credits.jpg”)
button_img = LoadImage(“CreditsButton.png”)
circle_img = LoadImage(“Circle.png”)

//*** Remove splash screen ***
while timer() < 4 and GetPointerPressed() = 0
 Sync()
endwhile
DeleteSprite(splash_spr)
DeleteImage(splash_img)

//*** Show main screen ***
main_spr = CreateSprite(main_img)
SetSpriteSize(main_spr,100,-1)

//*** Load circles at image differences ***
circle_spr1 = CreateSprite(circle_img)
SetSpriteSize(circle_spr1,-1,10)
SetSpritePosition(circle_spr1,91,86)
circle_spr2 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr2,51.5,22)
circle_spr3 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr3,49,68)
circle_spr4 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr4,73,66)
circle_spr5 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr5,88.5,66)
circle_spr6 = CloneSprite(circle_spr1)
SetSpritePosition(circle_spr6,55.75,62.5)
//*** Hide the circles ***
SetSpriteVisible(circle_spr1,0)
SetSpriteVisible(circle_spr2,0)
SetSpriteVisible(circle_spr3,0)
SetSpriteVisible(circle_spr4,0)
SetSpriteVisible(circle_spr5,0)
SetSpriteVisible(circle_spr6,0)

/*** Play game ***
//** Start timer display **
//* Reset the timer *
ResetTimer()
//* Set up timer text resource *
timer_txt = CreateText(str(GetSeconds()))
SetTextColor(timer_txt,0,0,0,255)
SetTextAlignment(timer_txt,2)
SetTextPosition(timer_txt,94,6)

//** Set count of differences found to zero **
found = 0
//** Set mouse button presses made to zero **
clicks = 0
repeat
 //** mouse button pressed **
 if GetPointerPressed() = 1
 //** Increment button presses **
 inc clicks
 //** If user selected a difference **
 //* Get ID of sprite hit *
 hit = GetSpriteHit(GetPointerX(),
 GetPointerY())
 //* If sprite hit is hidden circle *
 if hit >= circle_spr1 and hit <=circle_spr6
 and GetSpriteVisible(hit)=0
 //** Show appropriate circle **
 SetSpriteVisible(hit,1)
 //** Increment difference found count **
 inc found
 endif
 endif
 //** Update time **
 SetTextString(timer_txt,Str(GetSeconds()))
 //* Update the screen *
 Sync()
until found = 6 or clicks = 8 or GetSeconds() > 120
//** Record the time **
time_taken = GetSeconds()

//** Record the time **
time_taken = GetSeconds()
//** Delete main screen resources **
//* Delete circle sprites *
for c = circle_spr1 to circle_spr6
 DeleteSprite(c)
next c
//* Delete main screen sprite *
DeleteSprite(main_spr)
//* Delete the images used by these sprites *
DeleteImage(circle_img)
DeleteImage(main_img)
//* Delete time elapsed text resource *
DeleteText(timer_txt)
//* Update screen *
Sync()

//*** End game ***
//** If all 6 differences found **
if found = 6
 //** Show Win End Screen **
 finwin_spr = CreateSprite(finwin_img)
 SetSpriteSize(finwin_spr,100,-1)
 //** Display time taken **
 totaltime_txt = CreateText(str(time_taken))
 SetTextColor(totaltime_txt,0,0,0,255)
 SetTextSize(totaltime_txt,5.5)
 SetTextAlignment(totaltime_txt,2)

304 Hands On AppGameKit Studio Volume 1: Spot the Difference Game

 SetTextPosition(totaltime_txt,43,57.35)
 //** Display Credits button **
 button_spr = CreateSprite(button_img)
 SetSpriteSize(button_spr,15,-1)
 SetSpritePosition(button_spr,80,90)
 SetSpriteDepth(button_spr,9)
 do
 //** If Credits button pressed **
 if GetPointerPressed() = 1 and GetSpriteHit(
 GetPointerX(),GetPointerY()) = button_spr
 //** Show credits screen for 5 seconds **
 credits_spr = CreateSprite(credits_img)
 SetSpriteSize(credits_spr,100,100)
 //* Credits screen placed over win
 screen *
 SetSpriteDepth(credits_spr,8)
 Sync()
 Sleep(5000)
 //* Remove Credits screen *
 DeleteSprite(credits_spr)
 endif
 Sync()
 loop
else
 //** Show Lose end screen **
 finlose_spr = CreateSprite(finlose_img)
 SetSpriteSize(finlose_spr,100,100)
 do
 Sync()
 loop
endif

The game is now complete. Check that the two end screens
appear under the appropriate conditions and that the Credits
screen can be accessed from the winning screen.

	Cover
	00 - Contents
	01 - Algorithms
	02 - Background Intel
	03 - Starting AGK Studio
	04 - Data
	05 - Selection
	06 - Iteration
	07 - A First Look at Resources
	08 - Spot the Difference

