
DarkBASIC Pro: Counters and Timers Copyright © 2011 A. Stewart 1

2 www.digital-skills.co.uk DarkBASIC Pro: Counters and Timers

Counters and Timers

Introduction
Many games need to display either counters, or timers, or both.

We need to count how many points you’ve accumulated during a game, the number of
bullets remaining in your weapon, the number of health points your characters still has.
Likewise, we need to know how much time is remaining to complete a task or how much
time has been taken to achieve some objective.

Of course, counters and timers are fairly easy to achieve if they are never to be displayed
or only to be displayed at the end of a game; a simple variable and some type of display
statement will achieve this. However, when we want to see a running total or time on
screen with real time updates then we need to work a little harder. This article will take
you through some of the ways of achieving this.

Counters
Sprites

The simplest way to create a text display when working on a game is to create a graphic
containing the required display. For our counter we need an image containing the digits
0 to 9. FIG-1 shows one way to go about this.

Working in Adobe Illustrator, we create
a 10 column, 1 row grid. Each cell will
store a single number. This ensures
that digits are spaced equally.

Picking a suitable font and size, we
type in the digits 0 to 9 with a single
space between each digit. The digits
here are coloured orange.

The numbers are moved over the grid
and stretched until there is one digit in
each cell. The grid and its borders are
then painted in black.

The drawing is then exported as a
bitmap (.bmp) file. In the Rasterize
Options dialog box, we need to select
the options indicated below.

� � � � � � � � � �

IrisUPC font
size 50, bold

� � � � � � � � � �

Color Model : RGB

Anti-Alias

Medium (150 ppi)

If the Anti-Alias option
is checked, the resulting
image will not display
clearly, showing rough
pixelation around the
edges of the digits.

FIG-1

Creating an Image

DarkBASIC Pro: Counters and Timers Copyright © 2011 A. Stewart 3

Displaying the Digits

To display the individual digits within our image we need to create a 10 framed animated
sprite. Frame 1 will contain the digit 0; frame 2 the digit 1; etc.

The program in FIG-2 demonstrates the use of the image. The program has the following
logic.

Since the graphic will be split into 10
frames (one for each digit) we resize
the image so that its width is a multiple
of 10.

Finally, we trim the excess black areas
above and below the digits from the
image before resaving it.

The image is then loaded into a paint
program. In Adobe Photoshop, there
are two problems with the image...

These problems are easily solved by
filling all background areas with true
black (remembering also to fill the
enclosed areas in the 0, 4, 6, 8, and 9).

White border
on bottom and right

Background
no longer black

black
filled

Width : 1000

Constrain Proportions

Activity 1

Use the software available to you to create an image containing the digits 0 to 9.

Make sure the digits are evenly spaced and that the background colour is black.

If necessary, resize the image so that its size in pixels is exactly divisible by 10.

Trim any excess background above and below the digits.

Save the file as Digits.bmp.

Although the background
may look black, when
the eye dropper is moved
over the background
we can see the the RGB
settings are not 0,0,0
(true black).

We need the background
to be true black so that it
will be transparent within
the sprite.

FIG-1
(continued)

Creating an Image

If you do not have the
resources to create the
necessary file, this image
and all others used in this
article can be downloaded
from our website (www.
digital-skills.co.uk).

Go to the Downloads
page in the DarkBASIC
section.

4 www.digital-skills.co.uk DarkBASIC Pro: Counters and Timers

	 Initialise	screen	
	 Set	up	the	animated	sprite.	
	 Position	the	sprite	
	 FOR	9	times	do	
	 	 Wait	500	milliseconds	
	 	 Display	the	next	frame	
	 ENDFOR	
	 End	the	program

a

If we want our count to go above 9, all we need to do is use two or more sprites. Counts
up to 99 will need two sprites, 999, three sprites etc.

When we are dealing with two sprites, we need to determine which frame each of these
sprites needs to be set to for a given value of a variable called count.

If count is, say, 37, then the first sprite needs to display frame 4 (which contains the digit
3) and the second sprite frame 8. We can determine the frame settings for any value of
count using the formulae:

	firstframe			=	count	/	10	+	1	
	secondframe	=	count	mod	10	+	1

The program in FIG-3 displays the values 00 to 99.

REM	***	Initialise	screen			 	 	 ***	
SET	DISPLAY	MODE	1920,1200,32	

REM	***	Set	up	the	animated	sprite	***	
CREATE	ANIMATED	SPRITE	1,”Digits.bmp”,10,1,1

REM	***	Position	the	sprite		 	 	 ***	
SPRITE	1,640,480,1	 //	***	Defaults	to	frame	0	***
	
REM	***	Display	each	frame	in	turn		***
FOR	count	=	2	TO	10	
	 WAIT	500	
			SET	SPRITE	FRAME	1,count
NEXT	count	
	
REM	***	End	program	 	 	 	 	 	 ***
WAIT	KEY
END

Activity 2

Start up DarkBASIC Pro and create a new project called Counter.dbpro.

Enter the code given in FIG-2.

Copy Digits.bmp into the project’s folder.

Execute your code and check that all 10 digits are correctly displayed.

Save your project.

FIG-2

Testing the Digits

NOTE: You will
probably have to
modify the SET
DISPLAY MODE line
to match your own
screen’s resolution.

DarkBASIC Pro: Counters and Timers Copyright © 2011 A. Stewart 5

For a count which reaches three digits, the frames for each of the sprites would be
calculated as follows:

	frame1		 =	count	/	100	+	1	
	temp			 =	count	mod	100	
	frame2		 =	temp	/	10	+	1	
	frame3		 =	temp	mod	10	+	1

Note the use of the variable temp to remove the 100s from the count once the first frame
value has been calculated.

REM	***	Initialise	screen														***
SET	DISPLAY	MODE	1920,1200,32

REM	***	Create	sprites																	***
CREATE	ANIMATED	SPRITE	1,”Digits.bmp”,10,1,1
CREATE	ANIMATED	SPRITE	2,”Digits.bmp”,10,1,1

REM	***	Position	sprites	***
SPRITE	1,640,480,1
SPRITE	2,710,480,1

REM	***	Set	both	sprites	to	frame	1				***
SET	SPRITE	FRAME	1,1
SET	SPRITE	FRAME	2,1

REM	***	Display	all	value	up	to	99					***
FOR	count	=	1	TO	99
			WAIT	500
			frame1	=	count	/	10	+	1
			frame2	=	count	mod	10	+	1
			SET	SPRITE	FRAME	1,frame1
			SET	SPRITE	FRAME	2,frame2
NEXT	count

REM	***	End	program																			***
WAIT	KEY
END

Activity 3

Create a new project named Counter2.dbpro.

Enter the code given in FIG-3.

Copy Digits.bmp into the new project’s folder.

Test your program and then save the project.

Activity 4

Modify Counter2.dbpro to handle a three digit count.

FIG-3

Double Digit Counting

6 www.digital-skills.co.uk DarkBASIC Pro: Counters and Timers

The final program (see FIG-4) makes use of the counter in a simple game. The game
displays a circle at a random position on the screen. The player must then click on the
circle. The number of circles clicked within a 15 second period is the score achieved.

The program makes use of the following logic:

Initialise	screen	
Load	Images	used	by	static	sprites	
Set	up	animated	sprites	
Set	up	counter	sprites	
Position	counter	sprites	
Set	both	counter	sprites	to	frame	1	
Set	count	to	zero	
Seed	random	number	generator	
Set	start	time	
REPEAT	
	 	 Randomly	position	ball	
	 	 Wait	for	ball	to	be	clicked	
	 	 Increment	count	
	 	 Update	counter	sprites	
UNTIL	15	seconds	passed	
Display	result	
End	program

The static images are the ball, a black, single pixel and final text message. The black
pixel image is used to track the mouse pointer and help detect when the mouse is over
the ball.

REM	***	Initialise	screen															 	 ***
SET	DISPLAY	MODE	1920,1200,32

REM	***	Load	images	used	by	static	sprites		***
LOAD	IMAGE	“black.bmp”,3
LOAD	IMAGE	“ball.bmp”,4
LOAD	IMAGE	“YourScoreWas.bmp”,5

REM	***	Create	sprites																		 	 ***
CREATE	ANIMATED	SPRITE	1,”Digits.bmp”,10,1,1
CREATE	ANIMATED	SPRITE	2,”Digits.bmp”,10,1,1

REM	***	Position	counter	sprites		 	 	 	 ***
SPRITE	1,1750,80,1
SPRITE	2,1820,80,1

REM	***	Set	both	counter	sprites	to	frame	1	***
SET	SPRITE	FRAME	1,1
SET	SPRITE	FRAME	2,1

REM	***	Set	count	to	zero			 	 	 	 	 	 ***
count	=	0

REM	***	Seed	random	number	generator		 	 	 ***
RANDOMIZE	TIMER()

REM	***	Start	game		 	 	 	 	 	 	 	 	 ***

REM	***	Set	start	time			 	 	 	 	 	 	 ***
starttime	=	TIMER()
REPEAT
			REM	***	Randomly	position	ball		 	 	 	 ***

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Continued on next page

FIG-4

Using a Count in a
Game

DarkBASIC Pro: Counters and Timers Copyright © 2011 A. Stewart 7

			ballx	=	RND	(1800)	+	50
			bally	=	RND	(1100)	+	50
			SPRITE	4,ballx,bally,4
			REM	***	Wait	for	ball	to	be	clicked	***
			REPEAT
						SPRITE	3,	MOUSEX(),	MOUSEY(),3
			UNTIL	SPRITE	COLLISION(3,4)	AND	MOUSECLICK()	=	1
			REM	***	Increment	count	***
			INC	count
			REM	***	Update	displayed	count	***
			frame1	=	count	/	10	+	1
			frame2	=	count	mod	10	+	1
			SET	SPRITE	FRAME	1,frame1
			SET	SPRITE	FRAME	2,frame2

UNTIL	TIMER()	-	starttime	>=	15000

REM	***	Display	result											***
HIDE	SPRITE	4
SPRITE	5,380,600,5
SPRITE	1,1000,614,1
SPRITE	2,1070,614,2

REM	***	End	program	***
WAIT	5000
END

Timers
In one respect, a typical timer is very similar to a counter: it displays an incrementing
number. The main difference is that the number displayed is incremented due to the
passage of time rather than to signify an increase in points or a decrease in ammunition.

Typically, a timer will increment every second, so a program which makes use of a timer
will employ the following logic:

FIG-4
(continued)

Using a Count in a
Game

Activity 5

If you have not done so before, download the images used from our website
(www.digital-skills.co.uk). You’ll find them in the Downloads page of the
DarkBASIC section.

Start a new project named CounterGame.dbpro.

Enter the code given in FIG-4.

Make sure the images you downloaded are unzipped and placed in the project’s
folder.

Test out the game.

Save your project.

8 www.digital-skills.co.uk DarkBASIC Pro: Counters and Timers

Initialise	timer	
REPEAT	
	 	 Play	game	for	1	second	
	 	 Update	timer	
UNTIL	game	complete

Digital Timer

We can make use of the methods we used to implement a counter to produce a digital
clock (see the code in FIG-5).

SET	DISPLAY	MODE	1920,1200,32

REM	***	Load	image	used	by	static	sprite			 ***
LOAD	IMAGE	“Colon.bmp”,1

REM	***	Create	sprites																		 	 ***
CREATE	ANIMATED	SPRITE	1,”Digits.bmp”,10,1,2	`Minutes
CREATE	ANIMATED	SPRITE	2,”Digits.bmp”,10,1,2	`Seconds	(tens)
CREATE	ANIMATED	SPRITE	3,”Digits.bmp”,10,1,2	`Seconds	(units)

REM	***	Position	sprites		 	 	 	 	 	 	 ***
SPRITE	1,490,80,2
SPRITE	4,560,80,1				`Colon
SPRITE	2,570,80,2
SPRITE	3,640,80,2

REM	***	Set	sprites	to	frame	1					 	 	 	 ***
SET	SPRITE	FRAME	1,1
SET	SPRITE	FRAME	2,1
SET	SPRITE	FRAME	3,1

REM	***	Set	timer	to	zero			 	 	 	 	 	 ***
time	=	0
REPEAT
			REM	***	Wait	one	second		 	 	 	 	 	 ***
			WAIT	1000
			REM	***	Update	timer		 	 	 	 	 	 	 ***
			time	=	time	+	1
			minutes	=	time	/	60
			seconds	=	time	mod	60
			SET	SPRITE	FRAME	1,		minutes	+	1
			SET	SPRITE	FRAME	2,	seconds	/	10	+	1
			SET	SPRITE	FRAME	3,	seconds	mod	10	+	1
UNTIL	time	=	100
END

Of course, we could make the clock count backwards down to zero simply by changing
three lines:

FIG-5

Using a Digital Timer

Activity 6

Start a new project and test out the code given in FIG-5.

Remember to copy the Digits.bmp and Colon.bmp files to the new project’s folder.

DarkBASIC Pro: Counters and Timers Copyright © 2011 A. Stewart 9

First we need to intialise the time variable to the number of seconds allowed, for example:

	time	=	100

The second modification is to decrease the time value after a one second wait:

	time	=	time	-	1

And lastly, we need to change the condition in the UNTIL statement to halt the loop
when the time is up:

	UNTIL	time	=	0

Analogue Timers

An alternative to the digital clock is to use the older analogue-style clock with a moving
hand. This is probably best suited to a countdown clock with a maximum of a 60 second
time limit.

A typical clock design is shown in FIG-6.

The clock face and hand are created as two separate images. The passing of time is
shown by rotating the hand.

The trick is to reset the origin of the hand so that it is at the centre of the small circle at
one end of the hand (see FIG-7).

Activity 7

Modify your last project so that the timer counts backwards.

FIG-6

A Countdown Timer

FIG-7

The Clock Hand

26 pixels

70 pixels

New origin
(13,62)

10 www.digital-skills.co.uk DarkBASIC Pro: Counters and Timers

When a sprite is rotated, it always rotates about its point of origin so this repositioning
will ensure that the sprite rotates in an identical way to the hand of a real clock.

The hand sprite itself must be positioned over the face so that its origin is in the exact
centre of the face.

In the images supplied the face is exactly 128 x 128 pixels so the hand’s new origin needs
to be placed at position (64,64) on the face.

Since a circle is 360o and one revolution of the clock face represents 60 seconds, each
second which passes requires the hand to rotate by 6o (360 / 60).

The complete program (shown in FIG-8) makes use of the following logic:

Load	images	used	
Create	sprites	
Reposition	hand	sprite’s	origin	
Position	hand	sprite	
Set	time	to	60	
REPEAT	
	 	 Wait	1	second	
	 	 Subtract	1	from	time	
	 	 Rotate	hand	6o
UNTIL	time	=	0

Of course, you don’t have to time a full minute. For example, if you want to limit the
time to, say, 45 seconds, its just a matter of setting the time variable to 45 and starting
the hand already rotated by 90o.

FIG-8

Using a Countdown
Analogue Timer

REM	***	Initialise	display																***
SET	DISPLAY	MODE	1920,	1200,	32
	
REM	***	Load	images	used	by	sprites							***
LOAD	IMAGE	“face.bmp”,	1
LOAD	IMAGE	“hand.bmp”,2
	
REM	***	Create	sprites	***
SPRITE	1,400,400,1
SPRITE	2,0,0,2
	
REM	***	Reposition	hand	sprites	origin				***	
OFFSET	SPRITE	2,13,62	
	
REM	***	Position	hand	sprite	over	face				***	
SPRITE	2,464,464,2
	
REM	***	Set	the	time	to	60	seconds								***
time	=	60
	
REPEAT
			REM	***	Wait	1	second																		***
			WAIT	1000
			REM	***	Update	time																				***
			time	=	time	-	1
			REM	***	Rotate	hand	by	6	degrees							***
			ROTATE	SPRITE	2,time*6
UNTIL	time	=	0
END

DarkBASIC Pro: Counters and Timers Copyright © 2011 A. Stewart 11

Since the analogue timer doesn’t show the exact time, you might want to display the
digital time beneath the face as demonstrated in the program in FIG-9.

FIG-9

Analogue and
Digital Display

Activity 8

Start a new DBPro project and enter the code given above.

Copy the required images into the project folder and test your program.

Modify the program to allow only 30 seconds on the clock.

REM	***	Initialise	display																***
SET	DISPLAY	MODE	1920,	1200,	32
REM	***	Load	images	used	by	sprites							***
LOAD	IMAGE	“face.bmp”,	1
LOAD	IMAGE	“hand.bmp”,2
REM	***	Create	sprites	***
SPRITE	1,400,400,1
SPRITE	2,0,0,2
REM	***	Create	animated	sprites	for							***
REM	***	digital	count																					***
CREATE	ANIMATED	SPRITE	3,”digitssmall.bmp”,10,1,3
CREATE	ANIMATED	SPRITE	4,”digitssmall.bmp”,10,1,3
REM	***	Reposition	hand	sprites	origin				***
OFFSET	SPRITE	2,13,62
REM	***	Position	hand	sprite	over	face				***
SPRITE	2,464,464,2
REM	***	Position	digital	count												***
SPRITE	3,420,540,3
SPRITE	4,455,540,3
REM	***	Set	the	time	to	60	seconds								***
time	=	60
REM	***	Set	digits	to	60																		***
SET	SPRITE	FRAME	3,7
SET	SPRITE	FRAME	4,1
REPEAT
			REM	***	Wait	1	second																		***
			WAIT	1000
			REM	***	Update	time																			***
			time	=	time	-	1
			REM	***	Rotate	hand	by	6	degrees							***
			ROTATE	SPRITE	2,time*6
			REM	***	Set	digital	count														***
			SET	SPRITE	FRAME	3,	time	/	10	+	1
			SET	SPRITE	FRAME	4,	time	mod	10	+	1
UNTIL	time	=	0
END

Activity 9

Modify your last program to incorporate a digital readout beneath the clock face.

The animated sprites
make use of a
reduced-size version
of the digits image.

12 www.digital-skills.co.uk DarkBASIC Pro: Counters and Timers

Fuse Bomb Timer

If you don’t want to specify an exact time to the player of your game but do want to show
them that they have a limited time in which to achieve some objective, you could make
use of more visually interesting timers such as a cartoon-style, fused bomb (see FIG-10).

This time we need several graphics:

± a static graphic for the bomb

± an animated graphic showing the shorting fuse

± an animated graphic for the burning tip of the fuse

± an animated graphic showing the explosion

These are shown in FIG-11.

The program required is a bit more complicated this time since we need to maintain the
flame effect at the end of the fuse. To make things easier, we’ll look at the code in
sections before giving the complete program.

FIG-10

A Bomb Timer

FIG-11

Bomb Timer Graphics

The fuse is organised
as a 7 x 3 graphic, but
the last two frames are
unused.

Explosion

Bomb

Fuse

Burn

DarkBASIC Pro: Counters and Timers Copyright © 2011 A. Stewart 13

The first innovation in the program is to position all of the graphics relative to the bomb’s
position rather than give absolute coordinates for everything. This way, if we want to
move the timer to a different position on the screen we only need to modify the coordinates
of the bomb graphic, the others will be repositioned automatically.

So the bomb’s coordinates are set using two named constants:

	REM	***	Program	constants	***	
	REM	***	Position	of	bomb		***	
	#CONSTANT	BOMBX	=	400	
	#CONSTANT	BOMBY	=	400	

When the burn graphic is shown, it has to move as the fuse grows shorter. The burn’s
offset from the bomb after each second is stored in two arrays. This requires the following
declarations:

	REM	***	Burn	offsets	***	
	REM	***	x	offsets	***
	DATA	122,121,119,113,105,			98,90,84,79,78,			78,74,70,63,53,				
		 	 45,38,33,31
	REM	***	y	offsets	***	
	DATA	0,8,17,25,29,			29,27,21,12,3,			-6,-16,-25,-30,-30,				
		 	 -29,-24,-14,-5
	REM		***	Arrays	for	burn	offsets	***	
	DIM	x(19)	
	DIM	y(19)

The data is copied into the arrays using a function:

	FUNCTION	InitialiseData()	
		 REM	***	Read	x	offsets	into	array		 	 	 ***	
		 FOR	c	=	1	TO	19	
					 READ	x(c)	
		 NEXT	c	
		 REM	***	Read	y	offsets	int	array		 	 	 ***	
		 FOR	c	=	1	TO	19	
					 READ	y(c)	
		 NEXT	c	
	ENDFUNCTION

Another function loads all the graphics ready for use:

	FUNCTION	InitialiseGraphics()	
				LOAD	IMAGE	“bomb.bmp”,1	
				CREATE	ANIMATED	SPRITE	2,”fuse.bmp”,7,3,2	
				CREATE	ANIMATED	SPRITE	3,”flame.bmp”,3,1,3	
				OFFSET	SPRITE	3,16,16	
				CREATE	ANIMATED	SPRITE	4,”blast.bmp”,3,1,4	
		 OFFSET	SPRITE	4,50,50	
	ENDFUNCTION

Notice the offset for the burn and explosion sprites (flame.bmp and blast.bmp, sprites 3
and 4). The offset points are calculated as the centre point of the sprites so that they are
correctly positioned later in the program.

Since we’ll want to add the sound of the fuse burning and the final explosion, we need a
another routine to load the sound files:

The symbol is
used to signify the
continuation of a line.

14 www.digital-skills.co.uk DarkBASIC Pro: Counters and Timers

	FUNCTION	InitialiseSound()	
			LOAD	SOUND	“Fuse.wav”,1	
			LOAD	SOUND	“Bomb.wav”,2	
	ENDFUNCTION

One routine positions the bomb and the fuse

	FUNCTION	SetUpBomb()	
		 REM	***	Position	bomb		 	 	 	 	 	 	 	 	 ***	
				SPRITE	1,BOMBX,BOMBY,1	
		 REM	***	Position	fuse		 	 	 	 	 	 	 	 	 ***	
				SPRITE	2,BOMBX+30,BOMBY-32,2	
	ENDFUNCTION

and the main routine runs through the complete animation reducing the length of the fuse
and making sure the burn animation is correctly positioned:

	FUNCTION	Play()	
				REM	***	Set	time	till	explosion			 	 	 	 	 ***	
				time	=	19	
				REPEAT	
							REM	***	Calculate	frame	and	array	subscript		***	
							sub	=	20	-	time	
							REM	***	Update	fuse	sprite	frame		 	 	 	 ***	
							SET	SPRITE	FRAME	2,sub	
							REM	***	Move	burn	sprite		 	 	 	 	 	 	 ***	
							SPRITE	3,BOMBX+x(sub),BOMBY+y(sub),3	
							REM	***	Play	burn	for	1	second		 	 	 	 	 ***	
							now	=	TIMER()	
							PLAY	SOUND	1	
							REPEAT	
										PLAY	SPRITE	3,1,3,3	
							UNTIL	TIMER()-now	>=	1000	
							REM	***	Reduce	time	remaining	by	one	second		***	
							time	=	time	-	1	
				UNTIL	time	=	0	
				REM	***	Explode	bomb		 	 	 	 	 	 	 	 	 ***	
				Explode()	
	ENDFUNCTION

The Explode() function plays the explosion animation, increasing its size and making it
fade to invisibility:

	FUNCTION	Explode()	
				REM	***	Delete	all	existing	sprites		 	 	 	 ***	
				DELETE	SPRITE	1	
				DELETE	SPRITE	2	
				DELETE	SPRITE	3	
		 REM	***	And	burn	sound	 	 	 	 	 	 	 	 	 ***	
		 DELETE	SOUND	1	
				REM	***	Position	explosion	sprite				 	 	 	 ***	
			 SPRITE	4,	BOMBX,	BOMBY,4	
		 REM	***	Play	explosion	sound	 	 	 	 	 	 	 ***	
				PLAY	SOUND	2	
		 REM	***	Make	explosion	bigger	and	fainter		 	 ***	
		 scale	=	100	
				alpha	=	255	
				REPEAT	
		 	 now	=	TIMER()	
		 	 REPEAT	

DarkBASIC Pro: Counters and Timers Copyright © 2011 A. Stewart 15

								 SCALE	SPRITE	4,	scale	
								 PLAY	SPRITE	4,1,3,3	
					 UNTIL	TIMER()-now	>=	100	
					 scale	=	scale	+	50	
					 alpha	=	alpha	/	2	
					 SET	SPRITE	ALPHA	4,alpha	
				UNTIL	scale	>	400	
		 REM	***	Delete	explosion	sprite	 	 	 	 ***	
			DELETE	SPRITE	4	
ENDFUNCTION

The complete program is shown in FIG-12.

FIG-12

A Bomb Timer

REM	***	Program	constants			 	 	 	 	 	 	 	 ***
REM	***	Position	of	bomb				 	 	 	 	 	 	 	 ***
#CONSTANT	BOMBX	=	400
#CONSTANT	BOMBY	=	400

REM	***	Burn	offsets		 	 	 	 	 	 	 	 	 	 ***
REM	***	x	offsets		 	 	 	 	 	 	 	 	 	 	 ***
DATA	122,121,119,113,105,			98,90,84,79,78,			78,74,70,63,53,				
	 	 45,38,33,31

REM	***	y	offsets		 	 	 	 	 	 	 	 	 	 	 ***
DATA	0,8,17,25,29,			29,27,21,12,3,			-6,-16,-25,-30,-30,				
	 	 -29,-24,-14,-5
	
REM	***	Arrays	for	burn	offsets			 	 	 	 	 	 ***
DIM	x(19)
DIM	y(19)
	
REM	***	
REM	*													Main	program	 	 	 	 	 	 	 *	
REM	***
InitialiseData()
SET	DISPLAY	MODE	1920,	1200,32
InitialiseGraphics()
InitialiseSound()
SetUpBomb()
Play()
WAIT	KEY
END
	
	

	
REM	***	
REM	*																Functions	 	 	 	 	 	 	 *	
REM	***

FUNCTION	InitialiseData()
FOR	c	=	1	TO	19
			READ	x(c)
NEXT	c
FOR	c	=	1	TO	19
			READ	y(c)
NEXT	c
ENDFUNCTION 			

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Continued on next page

16 www.digital-skills.co.uk DarkBASIC Pro: Counters and Timers

FUNCTION	InitialiseGraphics()
			LOAD	IMAGE	“bomb.bmp”,1
			CREATE	ANIMATED	SPRITE	2,”fuse.bmp”,7,3,2
			CREATE	ANIMATED	SPRITE	3,”flame.bmp”,3,1,3
			OFFSET	SPRITE	3,16,16
			CREATE	ANIMATED	SPRITE	4,”blast.bmp”,3,1,4
			OFFSET	SPRITE	4,50,50
ENDFUNCTION

FUNCTION	InitialiseSound()
			LOAD	SOUND	“Fuse.wav”,1
			LOAD	SOUND	“Bomb.wav”,2
ENDFUNCTION

FUNCTION	SetUpBomb()
			SPRITE	1,BOMBX,BOMBY,1
			SPRITE	2,BOMBX+30,BOMBY-32,2
ENDFUNCTION	

FUNCTION	Play()
			REM	***	Set	time	till	explosion			 	 	 	 	 ***
			time	=	19
			REPEAT
						REM	***	Calculate	frame	and	array	subscript		***
						sub	=	20	-	time
						REM	***	Update	fuse	sprite		 	 	 	 	 	 ***
						SET	SPRITE	FRAME	2,sub
						REM	***	Move	burn	sprite		 	 	 	 	 	 	 ***
						SPRITE	3,BOMBX+x(sub),BOMBY+y(sub),3
						REM	***	Play	burn	for	1	second		 	 	 	 	 ***
						now	=	TIMER()
						PLAY	SOUND	1
						REPEAT
									PLAY	SPRITE	3,1,3,3
						UNTIL	TIMER()-now	>=	1000
						REM	***	Reduce	time	remaining	by	one	second	***
						time	=	time	-	1
			UNTIL	time	=	0
			Explode()
ENDFUNCTION	

FUNCTION	Explode()
			REM	***	Delete	all	existing	sprites		 	 	 	 ***
			DELETE	SPRITE	1
			DELETE	SPRITE	2
			DELETE	SPRITE	3
			REM	***	Move	sprite	to	correct	position			 	 ***
			SPRITE	4,	BOMBX,	BOMBY,4
	 REM	***	Play	explosion	sound	 	 	 	 	 	 	 ***
			PLAY	SOUND	2	
	 REM	***	Make	explosion	bigger	and	fainter		 	 ***	
			scale	=	100
			alpha	=	255
			REPEAT	
	 	 now	=	TIMER()
				 REPEAT	 	 	 	 	 	 	 	 	 	 	 	 Continued on next page

FIG-12
(continued)

A Bomb Timer

DarkBASIC Pro: Counters and Timers Copyright © 2011 A. Stewart 17

Smoother Burn Movement

A problem with the burning fuse is that it moves in very obvious steps. It would be better
if we could create a smoother movement of the flame.

To do this we need to calculate the distance the burn travels between one step and the
next. This can be done using the lines

	REM	***	Calculate	the	difference	between				***	
		REM	***	this	position	and	the	next										***	
	diffx#	=	x(sub+1)-x(sub)	
		diffy#	=	y(sub+1)-y(sub)

But to handle the final move, we need to add a dummy value to the x and y offsets. This
means the following changes:

	REM	***	x	offsets	***	
	DATA	122,121,119,113,105,			98,90,84,79,78,			78,74,70,63,53,				
		 	 45,38,33,31,31
	REM	***	y	offsets	***
	DATA	0,8,17,25,29,			29,27,21,12,3,			-6,-16,-25,-30,-30,				
		 	 -29,-24,-14,-5,-5
	REM		***	Arrays	for	burn	offsets	***
	DIM	x(20)
	DIM	y(20)

And, of course, that means we have an extra item of data to read into each of the arrays:

	FUNCTION	InitialiseData()	
		 FOR	c	=	1	TO	20
					 READ	x(c)
		 NEXT	c	
		 FOR	c	=	1	TO	20
		 	 READ	y(c)
		 NEXT	c	
	ENDFUNCTION

The main change is to the Play() function where we need to calculate the distance moved

							 SCALE	SPRITE	4,	scale	
	 	 	 PLAY	SPRITE	4,1,3,3
				 UNTIL	TIMER()-now	>=	100
				 scale	=	scale	+	50
				 alpha	=	alpha	/	2
				 SET	SPRITE	ALPHA	4,alpha
			UNTIL	scale	>	400	
	 REM	***	 Delete	explosion	sprite		 	 	 	 	 ***
			DELETE	SPRITE	4
ENDFUNCTION

Activity 10

Type in and test the program given in FIG-12.

Try moving the bomb to a different position on the screen by changing the values
assigned to the constants BOMBX and BOMBY.

For copyright reasons
the sound files fuse.
wav and bomb.wav
are not included in the
downloads available
from our website. You
will find these files at
www.soundbible.com.

FIG-12
(continued)

A Bomb Timer

18 www.digital-skills.co.uk DarkBASIC Pro: Counters and Timers

by the flame from one second to the next and then move the flame in interim steps every,
say, 200 milliseconds. The modified code for the routine is shown below:

	FUNCTION	Play()
				REM	***	Set	time	till	explosion	***	
				time	=	19	
				REPEAT	
							REM	***	Calculate	frame	and	array	subscript	***	
							sub	=	20	-	time	
							REM	***	Update	fuse	sprite		 	 	 	 	 	 ***	
							SET	SPRITE	FRAME	2,sub	
							REM	***	Move	burn	sprite		 	 	 	 	 	 	 ***	
							SPRITE	3,BOMBX+x(sub),BOMBY+y(sub),3	
							REM	***	Calculate	the	difference	between				***	
							REM	***	this	position	and	the	next										***	
							diffx#	=	x(sub+1)-x(sub)	
							diffy#	=	y(sub+1)-y(sub)	
		 	 REM	***	Interim	move	counter	 	 	 	 	 	 ***	
							move	=	1	
							REM	***	Play	burn	for	1	second		 	 	 	 	 ***
							now	=	TIMER()	
							PLAY	SOUND	1	
							REPEAT	
		 	 	 REM	***	IF	multiple	of	200	msec		THEN			 ***
										IF	TIMER()	-	now	>	200	*	move	
		 	 	 	 REM	***	Move	flame	slightly		 	 	 	 ***	
													SPRITE	3,	BOMBX+x(sub)+move*(diffx#/5),		
		 	 	 	 	 	 	 BOMBY+y(sub)+move*(diffy#/5),3
		 	 	 	 REM	***	Next	move	number		 	 	 	 	 ***	
													move	=	move	+	1	
										ENDIF	
										PLAY	SPRITE	3,1,3,3
							UNTIL	TIMER()-now	>=	1000	
							REM	***	Reduce	time	remaining	by	one	second	***	
							time	=	time	-	1	
				UNTIL	time	=	0	
				Explode()	
	ENDFUNCTION

Using a Timer in a Game
So far we’ve created the code for various timers, but of course, these timers are meant to
be used as just one small part of a game. In this section we’ll look at how to incorporate
the timer code within a game.

Using the Digital Timer

To demonstrate the digital counter, we create a variation on the ball game we used to
demonstrate counters earlier in this chapter.

The main difficulty is integrating the game play into the one second time interval before
the clock needs to be updated. This is all achieved by one function:

FUNCTION	Play()	
			REM	***	No	time	has	passed	yet		 	 	 	 	 	 ***	
			time	=	0	
			REM	***	No	balls	clicked	yet		 	 	 	 	 	 	 ***	
			count	=	0	
			REM	***	New	ball	must	be	shown		 	 	 	 	 	 ***	

DarkBASIC Pro: Counters and Timers Copyright © 2011 A. Stewart 19

			newballneeded	=	1	
			REM	***	Play	until	20	balls	clicked			 	 	 	 ***	
			REPEAT	
						REM	***	Play	for	one	second		 	 	 	 	 	 ***	
						now	=	TIMER()	
						REPEAT	
									REM	***	IF	new	ball	needed	THEN		 	 	 	 ***	
									IF	newballneeded	=	1	
												REM	***	Randomly	position	ball		 	 	 ***	
												ballx	=	RND	(1800)	+	50	
												bally	=	RND	(1100)	+	50	
												SPRITE	3,ballx,bally,3	
												REM	***	New	ball	not	required			 	 	 ***	
												newballneeded	=	0	
												REM	***	Ball	not	clicked		 	 	 	 	 ***	
												ballclicked	=	0	
									ENDIF	
									REM	***	Wait	for	ball	clicked		or	1	sec		 ***	
									REPEAT	
												SPRITE	2,	MOUSEX(),	MOUSEY(),2	
												REM	***	IF	ball	clicked	THEN					 	 	 ***	
												IF	(SPRITE	COLLISION(2,3)	AND	MOUSECLICK()	=	1)	
															REM	***	ball	clicked			 	 	 	 	 ***	
															ballclicked	=	1	
															REM	***	New	ball	needed			 	 	 	 ***	
															newballneeded	=	1	
															REM	Add	1	to	count	of	balls	clicked	***	
															count	=	count	+	1	
												ENDIF	
									UNTIL		ballclicked	=	1	OR	TIMER()-now	>=1000	
						UNTIL	TIMER()-now	>=	1000	
									REM	***	Update	timer			 	 	 	 	 	 	 ***	
									time	=	time	+	1	
									minutes	=	time	/	60	
									seconds	=	time	mod	60	
									SET	SPRITE	FRAME	6,		minutes	+	1	
									SET	SPRITE	FRAME	7,	seconds	/	10	+	1	
									SET	SPRITE	FRAME	8,	seconds	mod	10	+	1	
			UNTIL	count	=	20	
ENDFUNCTION	

The complete program is shown in FIG-13.

FIG-13

Digital Timer Game

REM	***	Program	constants			 	 	 	 	 	 	 	 ***
REM	***	Clock	position				 	 	 	 	 	 	 	 	 ***
#CONSTANT	CLOCKX	1600
#CONSTANT	CLOCKY	20
	
REM	***	
REM	*													Main	program	 	 	 	 	 	 	 *	
REM	***
REM	***	Initialise	screen															 	 	 	 ***
SET	DISPLAY	MODE	1920,1200,32
InitialiseGraphics()
SetUpClock()
REM	***	Seed	random	number	generator		 	 	 	 	 ***
RANDOMIZE	TIMER()
Play()
WAIT	5000
END
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Continued on next page

20 www.digital-skills.co.uk DarkBASIC Pro: Counters and Timers

REM	***	
REM	*																Functions	 	 	 	 	 	 	 *	
REM	***	
	
FUNCTION	InitialiseGraphics()
			REM	***	Load	images	used	by	static	sprites			 ***
			LOAD	IMAGE	“Colon.bmp”,1
			LOAD	IMAGE	“black.bmp”,2
			LOAD	IMAGE	“ball.bmp”,3
			LOAD	IMAGE	“YourTimeWas.bmp”,4
			LOAD	IMAGE	“ClockBackground.bmp”,5
			REM	***	Create	animated	sprites	for	timer						***
			CREATE	ANIMATED	SPRITE	6,”Digits.bmp”,10,1,6	`Minutes
			CREATE	ANIMATED	SPRITE	7,”Digits.bmp”,10,1,6	`Seconds	(tens)
			CREATE	ANIMATED	SPRITE	8,”Digits.bmp”,10,1,6	`Seconds	(units)
			REM	***	Ensure	digits	on	top	of	clock	background	***
			SET	SPRITE	PRIORITY	6,1
			SET	SPRITE	PRIORITY	7,1
			SET	SPRITE	PRIORITY	8,1
ENDFUNCTION

FUNCTION	SetUpClock()
			REM	***	Position	clock	sprites		 	 	 	 	 	 ***
			SPRITE	5,CLOCKX,CLOCKY,5
			SPRITE	6,CLOCKX-10,CLOCKY+35,6
			SPRITE	1,CLOCKX+55,CLOCKY+35,1				`Colon
			SPRITE	7,CLOCKX+60,CLOCKY+35,6
			SPRITE	8,CLOCKX+115,CLOCKY+35,6
ENDFUNCTION

FUNCTION	Play()
			REM	***	No	time	has	passed	yet		 	 	 	 	 	 ***
			time	=	0
			REM	***	No	balls	clicked	yet			 	 	 	 	 	 ***
			count	=	0
			REM	***	New	ball	must	be	shown		 	 	 	 	 	 ***
			newballneeded	=	1
			REM	***	Play	until	20	balls	clicked		 	 	 	 ***
			REPEAT
						REM	***	Play	for	one	second		 	 	 	 	 	 ***
						now	=	TIMER()
						REPEAT
									REM	***	IF	new	ball	needed	THEN			 	 	 ***
									IF	newballneeded	=	1
												REM	***	Randomly	position	ball			 	 ***
												ballx	=	RND	(1800)	+	50
												bally	=	RND	(1100)	+	50
												SPRITE	3,ballx,bally,3
												REM	***	New	ball	not	required		 	 	 ***
												newballneeded	=	0
												REM	***	Ball	not	clicked		 	 	 	 	 ***
												ballclicked	=	0
									ENDIF
									REM	***	Wait	for	ball	clicked		or	1	sec		***
									REPEAT
												SPRITE	2,	MOUSEX(),	MOUSEY(),2
												REM	***	IF	ball	clicked	THEN						 	 ***
												IF	(SPRITE	COLLISION(2,3)	AND	MOUSECLICK()	=	1)

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Continued on next page

FIG-13
(continued)

Digital Timer Game

DarkBASIC Pro: Counters and Timers Copyright © 2011 A. Stewart 21

Using the Bomb

Embedding the game play within the bomb timer is slightly more complex since we need
to keep the burn effect animated as the game plays. Again, we have made use of the ball
game to demonstrate the techniques used. The complete program is shown in FIG-14.

Activity 11

Type in and test the program given in FIG-13.

FIG-14

Bomb Timer Game

															REM	***	ball	clicked		 	 	 	 	 ***
															ballclicked	=	1	
															REM	***	New	ball	needed		 	 	 	 ***
															newballneeded	=	1
															REM	Add	1	to	count	of	balls	clicked	***
															count	=	count	+	1
												ENDIF
									UNTIL		ballclicked	=	1	OR	TIMER()-now	>=1000
						UNTIL	TIMER()-now	>=	1000
									REM	***	Update	timer		 	 	 	 	 	 	 ***
									time	=	time	+	1
									minutes	=	time	/	60
									seconds	=	time	mod	60
									SET	SPRITE	FRAME	6,		minutes	+	1
									SET	SPRITE	FRAME	7,	seconds	/	10	+	1
									SET	SPRITE	FRAME	8,	seconds	mod	10	+	1
			UNTIL	count	=	20
ENDFUNCTION

REM	***	Program	constants			 	 	 	 	 	 	 	 ***
REM	***	Position	of	bomb				 	 	 	 	 	 	 	 ***
#CONSTANT	BOMBX	=	400
#CONSTANT	BOMBY	=	400

REM	***	Burn	offsets		 	 	 	 	 	 	 	 	 	 ***
REM	***	x	offsets		 	 	 	 	 	 	 	 	 	 	 ***
DATA	122,121,119,113,105,			98,90,84,79,78,			78,74,70,63,53,					 	
	 	 45,38,33,31,31
REM	***	y	offsets		 	 	 	 	 	 	 	 	 	 	 ***
DATA	0,8,17,25,29,			29,27,21,12,3,			-6,-16,-25,-30,-30,				
	 	 -29,-24,-14,-5,-5
REM		***	Arrays	for	burn	offsets		 	 	 	 	 	 ***
DIM	x(20)
DIM	y(20)	
	
REM	***	
REM	*													Main	program	 	 	 	 	 	 	 *	
REM	***	
InitialiseData()
SET	DISPLAY	MODE	1920,	1200,32
InitialiseGraphics()
InitialiseSound()
SetUpBomb()
Play()
END	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Continued on next page

FIG-13
(continued)

Digital Timer Game

22 www.digital-skills.co.uk DarkBASIC Pro: Counters and Timers

REM	***	
REM	*																Functions	 	 	 	 	 	 	 *	
REM	***	
	
FUNCTION	InitialiseData()
FOR	c	=	1	TO	20
			READ	x(c)
NEXT	c
FOR	c	=	1	TO	20
			READ	y(c)
NEXT	c
ENDFUNCTION
	

FUNCTION	InitialiseGraphics()	
	 REM	***	Load	bomb	graphics		 	 	 	 	 	 	 ***
			LOAD	IMAGE	“bomb.bmp”,1
			CREATE	ANIMATED	SPRITE	2,”fuse.bmp”,7,3,2
			CREATE	ANIMATED	SPRITE	3,”flame.bmp”,3,1,3
			OFFSET	SPRITE	3,16,16
			CREATE	ANIMATED	SPRITE	4,”blast.bmp”,3,1,4
			OFFSET	SPRITE	4,50,50	
	 REM	***	Load	game	graphics		 	 	 	 	 	 	 ***
			LOAD	IMAGE	“black.bmp”,5
			LOAD	IMAGE	“ball.bmp”,6
ENDFUNCTION
	

FUNCTION	InitialiseSound()
			LOAD	SOUND	“Fuse.wav”,1
			LOAD	SOUND	“Bomb.wav”,2
ENDFUNCTION
	

FUNCTION	SetUpBomb()	
	 REM	***	Position	bomb		 	 	 	 	 	 	 	 	 ***
			SPRITE	1,BOMBX,BOMBY,1	
	 REM	***	Position	fuse	 	 	 	 	 	 	 	 	 ***
			SPRITE	2,BOMBX+30,BOMBY-32,2
ENDFUNCTION
	

FUNCTION	Play()
			REM	***	Set	time	till	explosion			 	 	 	 	 ***
			time	=	19
			REM	***	No	balls	clicked	yet			 	 	 	 	 	 ***
			count	=	0
			REM	***	New	ball	must	be	shown		 	 	 	 	 	 ***
			newballneeded	=	1
			REM	***	Play	until	20	balls	clicked	or	bomb	explodes	***
			REPEAT
						REM	***	Calculate	frame	and	array	subscript	***
						sub	=	20	-	time
						REPEAT
									REM	***	IF	new	ball	needed	THEN			 	 	 ***
									IF	newballneeded	=	1
												REM	***	Randomly	position	ball			 	 ***
												ballx	=	RND	(1800)	+	50
												bally	=	RND	(1100)	+	50
													 	 	 	 	 	 	 	 	 	 	 	 Continued on next page

FIG-14
(continued)

Bomb Timer Game

DarkBASIC Pro: Counters and Timers Copyright © 2011 A. Stewart 23

												SPRITE	6,ballx,bally,6
												REM	***	New	ball	not	required		 	 	 	 ***
												newballneeded	=	0
									ENDIF
									REM	***	Update	fuse	sprite		 	 	 	 	 	 ***
									SET	SPRITE	FRAME	2,sub
									REM	***	Move	burn	sprite		 	 	 	 	 	 	 ***
									SPRITE	3,BOMBX+x(sub),BOMBY+y(sub),3
									REM	***	Calculate	the	difference	between					***
									REM	***	this	position	and	the	next											***
									diffx#	=	x(sub+1)-x(sub)
									diffy#	=	y(sub+1)-y(sub)
									REM	***	Interim	move	counter																	***
									move	=	1
									REM	***	Play	burn	for	1	second		 	 	 	 	 ***
									now	=	TIMER()
									LOOP	SOUND	1
									REPEAT
												REM	***	IF	multiple	of	200	msec		THEN			 ***
												IF	TIMER()	-	now	>	200	*	move
															REM	***	Move	flame	slightly												***
															SPRITE	3,	BOMBX+x(sub)+move*(diffx#/5),	
	 	 	 	 	 	 	 	 BOMBY+y(sub)+move*(diffy#/5),3
															REM	***	Next	move	number													 ***
															move	=	move	+	1
												ENDIF
												PLAY	SPRITE	3,1,3,1
												SPRITE	5,	MOUSEX(),	MOUSEY(),5
												REM	***	IF	mouse	clicked	over	ball	THEN			***
												IF	(SPRITE	COLLISION(5,6)	AND	MOUSECLICK()	=	1)
															REM	***	New	ball	needed		 	 	 	 	 ***
															newballneeded	=	1
															REM	Add	1	to	count	of	balls	clicked		 ***
															count	=	count	+	1
												ENDIF
									UNTIL	newballneeded=1	OR	TIMER()-now	>=1000
						UNTIL	TIMER()-now	>=	1000
						REM	***	Reduce	time	remaining	by	one	second			 ***
						time	=	time	-	1
			UNTIL	time	=	0	OR	count	=	20
			REM	***	Hide	ball		 	 	 	 	 	 	 	 	 	 	 ***
			DELETE	SPRITE	6
			IF	time	=	0
						Explode()
			ELSE
						DestroyBomb()
			ENDIF
ENDFUNCTION	

FUNCTION	DestroyBomb()
			DELETE	SPRITE	1
			DELETE	SPRITE	2
			DELETE	SPRITE	3
			DELETE	SOUND	1
ENDFUNCTION

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Continued on next page

FIG-14
(continued)

Bomb Timer Game

24 www.digital-skills.co.uk DarkBASIC Pro: Counters and Timers

FUNCTION	Explode()
			REM	***	Delete	all	existing	sprites		 	 	 	 ***
			DELETE	SPRITE	1
			DELETE	SPRITE	2
			DELETE	SPRITE	3
			REM	***	And	burn	sound			 	 	 	 	 	 	 	 ***
			DELETE	SOUND	1
			REM	***	Move	sprite	to	correct	position			 	 ***
			SPRITE	4,	BOMBX,	BOMBY,4
	 REM	***	Play	explosion	sound	 	 	 	 	 	 	 ***
			PLAY	SOUND	2	
	 REM	***	Make	explosion	bigger	and	fainter		 	 ***
	 scale	=	100
			alpha	=	255
			REPEAT
				 now	=	TIMER()
				 REPEAT
							 SCALE	SPRITE	4,	scale
							 PLAY	SPRITE	4,1,3,3
				 UNTIL	TIMER()-now	>=	100
				 scale	=	scale	+	50
				 alpha	=	alpha	/	2
				 SET	SPRITE	ALPHA	4,alpha
			UNTIL	scale	>	400	
	 REM	***	Delete	explosion	sprite	 	 	 	 	 	 ***
			DELETE	SPRITE	4
ENDFUNCTION

Activity 12

Type in and test the program given in FIG-14.

FIG-14
(continued)

Bomb Timer Game

