
Updating a Record in a Function

Introduction

Creating the Data Structure

DarkBASIC Pro allows us to create record structures using the TYPE statement.
For example, we could create a structure to hold the coordinates of a point in 2D
space with the lines

TYPE PointType
x AS INTEGER
y AS INTEGER

ENDTYPE

after which we can create a variable of this type

pnt AS PointType

and access the fields within that variable with statements such as

pnt.x = 12
pnt.y = 20
PRINT pnt.x

Operations on the Data Structure

However, if we're taking our programming seriously, statements such as

pnt.x = 12

are a worry, since direct access to the fields within the record allow us to place any
value we wish within it - even invalid ones. For example, if the coordinates stored
in a PointType variable represent a position on the screen, then neither x nor y should
contain a value of less than zero, but the code does not contain any logic for
preventing this.

A hardened programmer would be happier doing the assignment via a function
designed to check that the value being assigned is a valid one. For example, let's
say that the value assigned to x must be in the range 0 to 1000. Then using the
function-based approach, we would assign a value to x using a function such as

FUNCTION SetX(p AS PointType, newx)
IF newx < 0 OR newx > 1000

EXITFUNCTION
ENDIF
p.x = newx

ENDFUNCTION

The function takes two parameters:

p - the PointType structure to be changed.

newx - the new value to be assigned to the x field within p.

50 Hands On DarkBASIC Pro (Supplemental)

The function checks that the value to be assigned to x is within the permitted range
(0 to 1000) and if it's not, then the function terminates. Only if we have a valid value
is it assigned to the x field.

Activity Sup038

Create a new project (recordupdate01.dbpro) containing the code given.

Add a second function, SetY() to the code which allows a value between 0 and
1000 to be assigned to the y field.

For slightly more subtle reasons (that we need not go into here), functions are often
created which return the value held in each of the fields. For example, we could
return the value held in the x field using the following function

FUNCTION GetX(p AS PointType)
result = p.x

ENDFUNCTION result

Activity Sup039

Add the above code to your project. Also add a function (GetY()) to return the
y value of a PointType variable.

The purpose of all this only begins to make sense when you realise that on a large
software project many programmers will be involved. One programmer might write
the code for the PointType structure and its associated functions while a different
programmer makes use of variables of this type to solve some other problem. The
first programmer does not have to explain to the second how the PointType structure
was coded - only provide details of the names, parameters and purpose of each
function associated with the structure. The point of all this is to hide from anyone
using a PointType variable the details of how the data type and its operations are
constructed. To this end, the coding for PointType should be created in a separate
file and imported into any program that requires variables of this type using a
#INCLUDE statement.

The contents of this file are shown in LISTING-Sup012.

TYPE PointType
x AS INTEGER
y AS INTEGER

ENDTYPE

REM *** PointType operations ***
FUNCTION SetX(p AS PointType, newx)

IF newx < 0 OR newx > 1000
EXITFUNCTION

ENDIF
p.x = newx

ENDFUNCTION

FUNCTION SetY(p AS PointType, newy)
IF newy < 0 OR newy > 1000

EXITFUNCTION
ENDIF
p.y = newy

ENDFUNCTION

continued on next page

LISTING-Sup012

The PointType Data
Structure

Hands On DarkBASIC Pro (Supplemental) 51

FUNCTION GetX(p AS PointType)
result = p.x

ENDFUNCTION result

FUNCTION GetY(p AS PointType)
result = p.y

ENDFUNCTION result

Activity Sup040

Type in and save the code given in LISTING-Sup012 (PointType.dbpro).

An Application using PointType

With the data structure and its operations coded, we can now test the code by
creating an application which makes use of a PointType variable, assigns values to
it, and displays those values on the screen (see LISTING-Sup013).

#INCLUDE "PointType.dba"
REM *** Main section ****
REM *** Declare variable ***
pnt AS PointType
REM *** Assign values ***
SetX(pnt,12)
SetY(pnt,20)
REM *** Display values ***
PRINT GetX(pnt)," ",GetY(pnt)
WAIT KEY
END

Activity Sup041

Create a new project (TestPoint.dbpro) containing the code given in
LISTING-Sup013. Copy the file PointType.dba into this project's folder. Run
the program and check the results produced.

What went Wrong?

Of course, the problem is that you can't change the contents of a variable passed as
a parameter to a DarkBASIC Pro function. That's because the function uses a copy
of the original data rather than the origin itself. This is known as pass by value
parameter passing (see FIG-Sup14).

FIG-Sup14

How Parameter Passing
Works

Calling the function with the
line causes the two
variables named in 's parameter
list to be created.

SetX()

SetX()
SetX(pnt,12)

The line creates
the variable with both its fields,
and , containing zeros.

pnt AS PointType
pnt x

y

0

0 0

0

0

pnt

p newx
x

x

y

y

These variables
are created automatically

when is calledSetX()

LISTING-Sup012
(continued)

The PointType Data
Structure

LISTING-Sup013

Using a PointType
Variable

52 Hands On DarkBASIC Pro (Supplemental)

And, because pnt is unaffected by executing the code in SetX() and SetY(), the values
displayed on the screen by the line PRINT GetX(pnt), " ",GetY(pnt) are zeros.

Using Memory Blocks
DarkBASIC Pro allows us to reserve any number of bytes of memory using the
MAKE MEMBLOCK statement. For example, the line

MAKE MEMBLOCK 1,20

would reserve a block of 20 bytes and assign it an ID of 1.

Memory blocks are assigned IDs in much the same way as an image, sprite, or 3D
object is given an ID. No two memory blocks can have the same ID.

By making use of these memory blocks we can solve our problem of updating
variables within a function.

First we have to calculate how many bytes a memory block would require if it is to
store the details of a PointType variable. Since the structure contains two integer
values (x and y) we'll need 8 bytes within the block (4 for each integer) - see
FIG-Sup15.

To store a value in a specific part of a reserved memory block, we use the WRITE
MEMBLOCK statement giving the block ID, the offset position within the block
where storage is to begin, and the value to be stored. So, whereas in the traditional
record structure we wrote

p.x = 12

with the memory block, the equivalent statement would be

WRITE MEMBLOCK WORD 1,0,12 // block ID 1, offset 0, value 12

FIG-Sup15

An 8-byte Memory
Block for Storing Two
Integer Values

0 1 2 3 4 5 6 7
byte offset

within block

x y

MEMBLOCK
statements are covered
in Chapter 47 of
Volume 2.

Notice that
MEMBLOCK
statements use the term
WORD rather than
INTEGER.

FIG-Sup14
(continued)

How Parameter Passing
Works

Now, when the code within is
executed, it is the contents of that
change while remains untouched.

SetX()
p

pnt

Just before execution of ,the
values given in the line
are copied to the parameter variables.

SetX()
SetX(pnt,12)

0
0

0

12

12

12
0

0

0

0

pnt
pnt

p

p

newx

newx

x
x

x

x
y

y

y

y

12

Actual values
passed to SetX() p.x = newx

Unaffected by
the code in SetX()

Hands On DarkBASIC Pro (Supplemental) 53

Activity Sup042

What would be the equivalent of p.y = 20 when using a memory block with
an ID of 1?

To retrieve a value already stored within a memory block we specify the type of
value being retrieved, byte, word, float, etc., the block ID and the offset from the
start of the block. Hence to retrieve the value of y from our block, we would use the
statement

result = MEMBLOCK WORD(1,4)

Redesigning PointType
Near the start of this article we stated that any large project will likely involve
several programmers, each reponsible for different sections of code. When one of
the programmers in a team needs to make changes to his code it should be done in
such a way that little or no changes are required in the code produced by the other
programmers in the team.

In our scenario we might think of the code for PointType being created by one
programmer and TestPoint by another, so our aim is to rewrite PointType using
memory block with as little change as possible to the code in the main section.

Handling the Memory Block ID

Every time we want to create a PointType variable, we will need to create a new
memory block, each with its own unique ID value. To ensure a new ID for each
block we'll create a global ID variable which will be incremented each time a new
block is created:

GLOBAL memblockID = 0

The next trick is to redefine PointType as an integer. This will be used to contain
the ID of the block containing the actual data. Since the #CONSTANT statement
performs textual replacement, we can achieve our goal with the line

#CONSTANT PointType INTEGER

Whenever a programmer requires a PointType variable a new memory block must
be created and the memblockID variable incremented. This is done with the code

FUNCTION CreatePointType()
INC memblockID
MAKE MEMBLOCK memblockID,8

ENDFUNCTION memblockID

Notice that the function returns the ID used when the new block was created.

The other operations in PointType would be recoded as follows:

FUNCTION SetX(p AS PointType, newx)
IF newx < 0 OR newx > 1000

EXITFUNCTION
ENDIF
WRITE MEMBLOCK WORD p,0,newx

ENDFUNCTION

54 Hands On DarkBASIC Pro (Supplemental)

FUNCTION SetY(p AS PointType, newy)
IF newy < 0 OR newy > 1000

EXITFUNCTION
ENDIF
WRITE MEMBLOCK WORD p,4,newy

ENDFUNCTION

FUNCTION GetX(p AS PointType)
result = MEMBLOCK WORD(p,0)

ENDFUNCTION result

FUNCTION GetY(p AS PointType)
result = MEMBLOCK WORD(p,4)

ENDFUNCTION result

Notice that although the code for each routine has been changed, the purpose, name
and parameters of each function remain unchanged. This will minimise the changes
required by any programmer who has made use of our earlier code.

Activity Sup043

Rewrite your PointType.dbpro code to reflect the changes made. Do not
include the global memblockID variable in your code.

Updating the Application Program
As we stated earlier, the aim is to minimise disruption of any other code which
happens to make use of PointType variables when updating the PointType data
structure. Here we'll see just what changes are required to the earlier test program.

The first requirement is to add the global variable declaration:

GLOBAL memblockID = 0

and the second is to add a call to CreatePointType():

pnt = CreatePointType()

But, other than this, no further changes are needed, so our final code is that shown
in LISTING-Sup014.

#INCLUDE "PointType.dba"

REM *** Declare variable holding last memory block ID
GLOBAL memblockID = 0

REM *** Main section ****
REM *** Declare variable ***
pnt AS PointType

REM *** Create variable ***
pnt = CreatePointType()

REM *** Assign values ***
SetX(pnt,12)
SetY(pnt,20)
REM *** Display values ***
PRINT GetX(pnt)," ",GetY(pnt)
WAIT KEY
END

LISTING-Sup014

The Updated
TestPointType
Application

Hands On DarkBASIC Pro (Supplemental) 55

Activity Sup044

Modify your own TestPoint.dbpro to match the code given in
LISTING-Sup014.

Run the program and check if the results are correct.

Multiple Variables
There are no restrictions on the number of variables that can be created. For
example, we could create and manipulate two PointType variables with the lines:

#INCLUDE "PointType.dba"
GLOBAL memblockID = 0
p1 AS PointType
p2 AS PointType
p1 = CreatePointType()
p2 = CreatePointType()
SetX(p1,12)
SetY(p1,20)
SetX(p2,50)
SetY(p2,90)
PRINT GetX(p1)," ",GetY(p1)
PRINT GetX(p2)," ",GetY(p2)
WAIT KEY
END

Activity Sup045

Type in and test the program given above (TestPoint2.dbpro).

We could even create an array of PointType variables with the lines

DIM points(10) AS PointType
FOR c = 1 TO 10

points(c) = CreatePointType()
NEXT c

Activity Sup046

Write a program (TestPoint3.dbpro) which sets up an array of 10 PointType
values and assigns the x and y fields of each variable a random value between
0 and 1000. The program should then display the contents of each element in
the array.

56 Hands On DarkBASIC Pro (Supplemental)

Solutions
Activity Sup038

The program code should be:

TYPE PointType
x AS INTEGER
y AS INTEGER

ENDTYPE
FUNCTION SetX(p AS PointType, newx)

IF newx < 0 OR newx > 1000
EXITFUNCTION

ENDIF
p.x = newx

ENDFUNCTION
FUNCTION SetY(p AS PointType, newy)

IF newy < 0 OR newy > 1000
EXITFUNCTION

ENDIF
p.y = newy

ENDFUNCTION

Activity Sup039

The code for GetY() is:

FUNCTION GetX(p AS PointType)
result = p.x

ENDFUNCTION result

Activity Sup040

No solution required.

Activity Sup041

The program displays the values 0 0.

Activity Sup042

The equivalent to p.y = 20 would be

WRITE MEMBLOCK 1,4,20

Activity Sup043

The code for PointType.dbpro is:

#CONSTANT PointType INTEGER

REM *** PointType operations ***
FUNCTION CreatePointType()
INC memblockID
MAKE MEMBLOCK memblockID,8

ENDFUNCTION memblockID

FUNCTION SetX(p AS PointType, newx)
IF newx < 0 OR newx > 1000

EXITFUNCTION
ENDIF
WRITE MEMBLOCK WORD p,0,newx

ENDFUNCTION

FUNCTION SetY(p AS PointType, newy)
IF newy < 0 OR newy > 1000

EXITFUNCTION
ENDIF
WRITE MEMBLOCK WORD p,4,newy

ENDFUNCTION

FUNCTION GetX(p AS PointType)
result = MEMBLOCK WORD(p,0)

ENDFUNCTION result

FUNCTION GetY(p AS PointType)
result = MEMBLOCK WORD(p,4)

ENDFUNCTION result

Activity Sup044

No solution required.

Activity Sup045

No solution required.

Activity Sup046

The program code is:

#INCLUDE "PointType2.dba"
GLOBAL memblockID = 0
REM *** Create array ***
DIM points(10) AS PointType
FOR c = 1 TO 10

points(c) = CreatePointType()
NEXT c
REM *** Seed random number generator ***
RANDOMIZE TIMER()
REM *** Assign values to each point ***
FOR c = 1 TO 10

SetX(points(c),RND(1000))
SetY(points(c),RND(1000))

NEXT c
REM *** Display values ***
PRINT "Values stored are:"
FOR c = 1 TO 10

PRINT c, " ", GetX(points(c))," ",
�GetY(points(c))
NEXT c
REM *** End program ***
WAIT KEY
END

Hands On DarkBASIC Pro (Supplemental) 57

