
Hands On Python 3: Events and Event Handlers 99

In this Chapter:

T Keyboard and Mouse Events

T Bind Methods

T The Bindtags List

T Event Names

T Timed Events

T The Event Class

T Virtual Events

T Forcing Events

Events and Event Handlers

100 Hands On Python 3: Events and Event Handlers

Keyboard Events

Introduction
So far we have made use of the command option when constructing a button or radio
button to link a widget event to an event handler. And, although this approach is fine
for very simple programs, it has some limitations.

For example, we cannot get other widgets, such as a label, to react to an event nor
can we get buttons to react to any other event other than being pressed.

Another problem occurs when we link more than one widget to the same event
handler - we have no simple way of knowing which of the widgets has invoked the
event handler when it begins to execute.

Binding
If we want a widget to react to an event which cannot be specified by setting that
widget’s command option, then we need to bind the new event to that widget. One way
to do this is to use the bind() method which is available to every widget and has the
following format:

bind(event_name, handler [,+])
This method is used to ‘bind’ the widget to one or more
events. When the widget has focus and that event occurs
the specified event-handler is run.

 event_name is a string giving the name of the event to which the
widget is to be bound.

 handler is the name of the event handler to be executed when the
event occurs.

 ‘+’ if the + symbol is included, handler is added to the list
of event handlers to be executed when the specified
event occurs. If the + is missing, then handler replaces
all existing event handlers for the specified event.

Let’s say we want a button, but1, to react to the a key being pressed on the keyboard
by executing an event handler called handle(), then we would write

but1.bind(‘a’, handle)

When dealing with standard, printable characters from the keyboard (other than the
space or < characters), the event name is simply a string containing the key involved.

The code for the event handler itself is a little different from those we linked to the
command option of a button. These new event handler must take a parameter
(traditionally called e or event). We’ll discuss the purpose of this parameter later. For
the moment, all we need to know is that it must be included.

The program in FIG-4.1 gives a simple demonstration of event binding by linking a
Button widget to the pressing of the letter b on the keyboard. This causes the contents
of a second, label widget to change.

Hands On Python 3: Events and Event Handlers 101

If we want the event to be triggered by a capital A being pressed, then we need to
change the bind() statement to read

but1.bind(‘A’,change_label)

and when the program is run, we need to press Shift-A to get the event to occur.

FIG-4.1

Event Binding

#****** Keyboard Events ******

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_label(e):
 “””Change the label contents
 “””
 lab1[‘text’] = “A key pressed”

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()

#*** Add Label ***
lab1 = ttk.Label(root, text = “Waiting...”)
lab1.pack()
#*** Add button ***
but1 = ttk.Button(root, text = “Give Focus”)
but1.pack()

#*** Make button react to the a key being pressed ***
but1.bind(‘b’,change_label)

#*** Wait for events ***
root.mainloop()

Activity 4.1

In the GUI project, create a new file called KeyboardBinding.py and implement
the code given in FIG-4.1.

Run the program. What happens when you press the b key?

If you start by pressing the b key, nothing will happen. This is because the
button does not have focus.

Click on the button to give it focus. Now, press the b key again. What happens
this time?

Modify your program so that it reacts to the a key rather than the b key.

Test and save your program.

102 Hands On Python 3: Events and Event Handlers

For the remainder of the examples, we’ll stick with lowercase characters.

If we would like to run our event handler when either the a or b key is pressed, then
we might try writing

but1.bind(‘ab’, change_label)

but this does not have the desired effect.

As we can see from Activity 4.3, binding to ‘ab’ means that these to keys must be
pressed in that order - a followed by b. If we want either key to cause the event
handler to execute, then we need to write two separate bind statements:

but1.bind(‘a’, change_label)
but1.bind(‘b’, change_label)

For the next example, we’ll have the a key not only change the contents of the label
but also the background colour of the window.

Now, although we could simply achieve this by adding another statement to existing
event handler, we’ll learn a bit more if we perform the colour change in a second
handler which we’ll call change_screen().

If we were to link the a key to this new handler with the line
but1.bind(‘a’, change_screen)

we would overide the a key’s link to the label_change() handler. To have this single
event (the pressing of the a key) cause both handlers to be executed, we must make
use of the bind() method’s third parameter and write

 but1.bind(‘a’, change_screen, ‘+’)

forcing the new handler to be executed along with the original handler.

Activity 4.2

Modify KeyboardBinding.py so that the event is triggered by a capital A being
entered.

Test and save your program.

Activity 4.3

Modify KeyboardBinding.py so that the call to but1.bind() matches the line
given above.

What is required to cause the specified event to occur?

Save your program.

Activity 4.4

Modify KeyboardBinding.py so that the event handler is executed when either a
or b are pressed.

Test and save your program.

Hands On Python 3: Events and Event Handlers 103

Return Values

When we call bind() to set up an event and its handler, the method returns a reference
to the event-handler. For example, changing the last version of KeyboardBinding.py
so that the bind statements become

h1 = but1.bind(‘a’, change_label)
h2 = but1.bind(‘a’, change_screen, ‘+’)

and this is followed by the statement
print(h1, ”and”, h2)

then we get the following display:

1805128change_label and 3598656change_screen

We can find out which events a widget has been bound to previously by calling
bind() without parameters. For example, adding the line

print(but1.bind())

to the previous program would display the tuple

(‘a’,)

Key Names
Not all keys on the keyboard are so easily specified when naming an event. For
example, how do we specify that an event is to occur when the up arrow key is
pressed?

To get round this problem, all the troublesome keys are given a symbolic name
(called keysym) as well as a numeric code equivalent to the symbolic name,
(keysym_num) and a keycode number (keycode). These values are shown in FIG-
4.2.

Activity 4.5

Modify KeyboardBinding.py adding a new handler (called change_screen())
for the a key which changes the screen background colour to red. Remove the
handler for the b key.

Test the program with and without the ‘+’ option in the second call to bind().

Save your program.

Activity 4.6

Modify KeyboardBinding.py so that pressing a calls change_label() and
pressing b calls change_screen().

In addition, display in the console window, the events to which but1 is linked.

Save your program.

104 Hands On Python 3: Events and Event Handlers

Alt_L 65513 64 Left-hand Alt key

Alt_R 65514 113 Right-hand Alt key

BackSpace 65288 22 Backspace

Cancel 65387 110 Break

Caps_Lock 65549 66 CapsLock

Control_L 65507 37 Left-hand Ctrl key

Control_R 65508 109 Right-hand Ctrl key

Delete 65535 107 Delete

Down 65364 104

End 65367 103 End

Escape 65307 9 Esc

Execute 65378 111 SysRq

F1 65470 67 F1 key

F2 65471 68 F2 key

Fi 65469+i 66+i Fi key (i = 1 to 11)

F12 65481 96 F12 key

Home 65360 97 Home

Insert 65379 106 Insert

Left 65361 100

Linefeed 106 54 Linefeed (Ctrl-J)

KP_0 65438 90 Keypad 0

KP_1 65436 87 Keypad 1

KP_2 65433 88 Keypad 2

KP_3 65435 89 Keypad 3

KP_4 65430 83 Keypad 4

KP_5 65437 84 Keypad 5

KP_6 65432 85 Keypad 6

KP_7 65429 79 Keypad 7

KP_8 65431 80 Keypad 8

KP_9 65434 81 Keypad 9

keysym Physical Keykeysym_
num

keycode
FIG-4.2

Symbolic Key Names

Hands On Python 3: Events and Event Handlers 105

keysym Physical Keykeysym_
num

keycode

KP_Add 65451 86 Keypad +

KP_Begin 65437 84 Keypad centre (5)

KP_Decimal 65439 91 Keypad . (decimal point)

KP_Delete 65439 91 Keypad delete

KP_Divide 65455 112 Keypad /

KP_Down 65433 88 Keypad

KP_End 65436 87 Keypad End

KP_Enter 65421 108 Keypad Enter

KP_Home 65429 79 Keypad Home

KP_Insert 65438 90 Keypad Insert

KP_Left 65430 83 Keypad

KP_Multiply 65450 63 Keypad *

KP_Next 65435 89 Keypad PgDn

KP_Prior 65434 81 Keypad PgUp

KP_Right 65432 85 Keypad

KP_Subtract 65453 82 Keypad - (minus)

KP_Up 65431 80 Keypad

Next 65366 105 PageDown

Num_Lock 65407 77 NumLock

Pause 65299 110 Pause

Print 65377 111 PrtScrn

Prior 65365 99 PageUp

Return 65293 36 Enter (Return)

Right 65363 102

Scroll_Lock 65300 78 ScrLk

Shift_L 65505 50 Left-hand shift

Shift_R 65506 62 Right-hand shift

Tab 65289 23 Tab

Up 65362 98

FIG-4.2
(continued)

Symbolic Key Names

106 Hands On Python 3: Events and Event Handlers

When specifying an event involving any of these keys, we may make use of the
symbolic name.

Two other keys that make use of a symbolic name are the space bar (‘space’) and the
less than key (‘less’).

All symbolic names must be enclosed in angled brackets (< >) when referenced in a
call to bind(). For example, to have the window background colour change when the
button (but1) in KeyboardBinding.py has focus and the backspace key is pressed, we
would write

but1.bind(‘<BackSpace>’,change_screen)

The key specified in an event name is known as the event detail.

So what if we want all keys to initiate execution of a specific event-handler? In that
case, we use the term ‘<Key>’.

As we can see from the results of Activity 4.8, using ‘<Key>’ only assigns those keys
not previously assigned.

Event Types
There will be times when we want an event to occur, not when we press a key, but
when we release it. On these occasions we need to add the term KeyRelease. Hence,
to have the change_screen() handler executed when we release the Backspace key,
we would write

but1.bind(‘<KeyRelease BackSpace>’, change_screen)

In fact, we could have included the term KeyPress when we want to react to a key
being pressed:

 but1.bind(‘<KeyPress Backspace>’, change_screen)

but as you’ve found out from the previous examples, KeyPress is assumed, if you
don’t include it.

Activity 4.7

In KeyboardBinding.py begin by deleting the line which displays the events to
which but1 is linked.

Now change the binding so that the window background colour is changed by
pressing the Delete key.

Test and save your program.

Activity 4.8

Modify KeyboardBinding.py so that the window background changes to red
when but1 has focus and any key is pressed.

What happens when the a key is pressed first?

Save your program.

Hands On Python 3: Events and Event Handlers 107

The terms KeyPress and KeyRelease are classified as event types There are other
event types, as well see later in this chapter.

If we use KeyRelease on its own as in the line
but1.bind(‘<KeyRelease>’, change_screen)

the event will occur when any key is released.

Note, that although we can detect a key combination being pressed, it is only possible
to detect the release of a single key.

Using KeyPress on its own as in
but1.bind(‘<KeyPress>’, change_screen)

has exactly the same effect as ‘<Key>’ activating the event when any key is pressed.

Event Modifiers
Many window based commands have keyboard shortcuts which often involve
holding down the Ctrl or Alt keys while another key or set of keys are pressed. This
can be handled by adding an event modifier to the event name. Valid modifiers for a
keyboard event are

■ Alt
■ Control
■ Lock (caps lock on)
■ Shift
■ Double
■ Triple
■ Any

For example, we could have the window colour change linked to the key combination
Ctrl-C using the line

but1.bind(‘<Control c>’, change_screen)

Note that it is important to use the lowercase c.

Alternatively, the modifier and the key can be separated by a hyphen:
but1.bind(‘<Control-c>’, change_screen)

Although primarily for use with the mouse buttons, the Double and Triple options
can also be used for keyboard events. So, for example, the line

but1.bind(‘<Triple-a>’, change_screen)

would activate when but1 had focus and the a key was pressed three times in quick
succession.

Activity 4.9

Change KeyboardBinding.py so that the window background changes to white
when but1 has focus and the Delete key is released (do this by adding another
event handler called change_screen_white()).

Test and save your program.

108 Hands On Python 3: Events and Event Handlers

Any is used exclusively with the mouse buttons to mean that the event is activated by
pressing any mouse button.

We are not limited to a single modifier in the event name. For example, we could
have the Button widget respond to the key combination Alt-Shift-Home using the
line

but1.bind(‘<Alt-Shift-Home>’, change_screen)

However, be careful about the combination you choose, since there is always the
possibility that the operating system will intercept the keys. For example, it would be
a bad idea to try to catch Ctrl-Alt-Delete on a Microsoft Windows system.

The Event Class
The parameter we’ve been obliged to add to our latest event handlers is, in fact, an
object of class Event. An object of this type is automatically passed to the event
handler.

The Event class object contains many attributes from which we can harvest details
of the event that has just occurred. The attributes that relate to keyboard events and
more general attributes are listed below (some are only set by specific events):

char a string containing the key pressed (but only if it is a
standard printable ASCII character)

keycode an integer giving the keycode value for the key (see
FIG-4.2 for the keycode values).

keysym a string giving the keysym name for the key (see FIG-4.2
for the keysym values).

keysym_num an integer giving the keysym num value (see FIG-4.2
for the keysym num values).

serial the current value of an integer value that is incremented
every time an event occurs within your system. Be
aware that many events happen outside your own
program, so this number will not simply increment by
one for each event within your program.

time the current value of an integer value which is
incremented every millisecond.

type a integer code describing the type of event (a full set of
values is given later).

widget a reference to the widget that initiated the event.

Activity 4.10

Change KeyboardBinding.py so that the window background changes to red
only when the key combination Alt-z is pressed.

Test and save your program.

Hands On Python 3: Events and Event Handlers 109

The program in FIG-4.3 creates a text box, and executes an event handler on every
key press. The handler then displays the event class attributes listed above.

FIG-4.3

Displaying Event Details

#*** Event Details ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def event_details(e):
 “””Displays event details
 “””
 data[0][‘text’] = e.char
 data[1][‘text’] = e.keycode
 data[2][‘text’] = e.keysym
 data[3][‘text’] = e.keysym_num
 data[4][‘text’] = e.serial
 data[5][‘text’] = e.time
 data[6][‘text’] = e.type
 data[7][‘text’] = e.widget
#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create text box ***
ent1 = ttk.Entry(root)
ent1.pack(side = ‘left’)

#*** Run handler when any key pressed ***
ent1.bind(‘<Key>’, event_details)

#*** Add a frame ***
f1 = ttk.Frame(root)
f1.pack(side = ‘right’, ipadx = 50)

#*** Add labels to frame ***
label_texts = (‘char :’, ‘keycode :’, ‘keysym :’,
‘keysym_num :’, ‘serial :’ , ‘time :’, ‘type :’,
‘widget :’)
data = []
for r in range(8):
 ttk.Label(f1, text = label_texts[r]).grid(column = 0, row = r,
 sticky = E)
 data.append(ttk.Label(f1, text = “...”))
 data[r].grid(column = 1, row = r, sticky = W)

#*** Wait for events ***
root.mainloop()

Activity 4.11

Create a new file called EventDetails.py and enter the code given in FIG-4.3.
Press various keys and observe the values returned.

Save the program.

110 Hands On Python 3: Events and Event Handlers

Other Bind Methods
It seems a bit contrived to be forced to give the button in KeyboardBinding.py focus
before we can change the window’s background colour. After all, many programs
will produce an effect irrespective of what GUI element has focus when a key is
pressed - for example, pressing the F1 key to access the Help features of an application.

Luckily, Tkinter has other bind methods available.

bind_all(event, handler [,‘+’])

This method binds all widgets in an application to the specified event and handler.
For example, in KeyboardBinding.py, we could link all widgets to the a key being
pressed and change_screen() using the line

root.bind_all(‘a’, change_screen)

It is unimportant which widget is used to call the method.

The third parameter, ‘+’ can be added if this handler is to be added to existing handlers
for this event.

bind_class(class, event, handler[,‘+’])

Back in Chapter 2 when we were examining the attributes of our first widgets, we
saw that every widget can be assigned to a named group using the class attribute
(not to be confused with a class in the object-oriented sense).

This method binds all widgets of a specified group to an event and handler. For
example, in Tkinter, every button belongs to the grouping TButton (that is to say, that
every button’s class attribute has the value TButton). If we were to use the line

root.bind_class(‘TButton’,‘a’,handle)

every button within the application would, when in focus, react to the a key being
pressed by executing the function called handle().

Activity 4.12

Create a new file called Disabling.py and produce a program which displays six
buttons, each button should be changed to the disabled state when clicked on by
the left mouse button.

(HINT: the event handler should make use of the widget Event object’s widget
attribute and set the widget’s state attribute to disabled.)

Test and save the program.

Activity 4.13

Modify KeyboardBinding.py so that the window background changes to red
when Alt-z is pressed and to white when the keys are released irrespective of
the button having focus.

Test and save your program.

Hands On Python 3: Events and Event Handlers 111

It is unimportant which widget is used to call the method.

A final parameter, ‘+’, can be added if this handler is to be added to existing handlers
for this event.

We are free to assign a new value of our own to a widget’s class attribute. This should
be done when the widget is first created. The group name must be assigned using the
term class_ since class is a reserved term (we had the same problem earlier using
in_ rather than in). So we might put a button (but1) and a text box (ent1) in the same
grouping using the lines

but1 = ttk.Button(root, text = “TG button”, class_=‘TestGroup’)
ent1 = ttk.Entry(root, class_=‘TestGroup’)

Now, if we assign an event to the TestGroup group, both of these widgets will execute
the associated handler under the correct circumstances.

However, changing a widget’s default class value can have undesired consequences
as we’ll see in the next program.

The layout shown in FIG-4.4 contains a text box and a button belonging to a grouping
called TestGroup (as indicated). The other widgets do not belong to a grouping.

The two group widgets are coded to change the contents of the label when the Alt-z
key combination is pressed. The program code is given in FIG-4.5.

FIG-4.4

Setting Class Names:
Display

TestGroup
widgets

FIG-4.5

Setting Class Names:
Code

#*** Binding Groupings ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_label(e):
 “””Changes the label contents
 “””
 lab1[‘text’] = “Changed by a TestGroup widget”

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

112 Hands On Python 3: Events and Event Handlers

The results of Activity 4.14 shows us that, although there may be times when we’d
like a set of different widgets to belong to the same grouping, changing the class
name causes too many problems. Luckily, there is another way to achieve the
grouping.

Bindtags
There is an “under the hood” detail on how events are linked to widgets that can be
worth knowing about.

Every widget maintains a list of values called bindtags. A typical bindtags list will
contain exactly four entries initially (although the toplevel window only has three).
Below is the bindtags lists for a Label widget (lab1) and two Button widgets (but1
and but2) from a program.

(‘.2734064’, ‘TLabel’, ‘.’, ‘all’)
(‘.36138800’, ‘TButton’, ‘.’, ‘all’)
(‘.44461872’, ‘TButton’, ‘.’, ‘all’)

FIG-4.5
(continued)

Setting Class Names:
Code

#*** Add ungrouped Label ***
lab1 = ttk.Label(root, text = “Awaiting an event ...”)
lab1.pack()

#*** Add TestGroup button ***
but1 = ttk.Button(root, text = “TG button”, class_ = ‘TestGroup’)
but1.pack()

#*** Add ungrouped button ***
but2 = ttk.Button(root, text = “Non-TG Button”)
but2.pack()

#*** Add TestGroup text box ***
ent1 = ttk.Entry(root, class_ = ‘TestGroup’)
ent1.pack()

#*** Change label if Alt-z pressed when a ***
#*** TestGroup widget has focus ***
but1.bind_class(‘TestGroup’,’<Alt-z>’, change_label)

#*** Wait for events ***
root.mainloop()

Activity 4.14

Create a new GroupBinding.py and implement the code given in FIG-4.5.

When you run the program, can the widgets in group TestGroup be given focus
by clicking on them? Can the widgets in the group be given focus using the Tab
key?

Can data be typed into the text box?

Give focus to either of the widgets in group TestGroup and press Alt-z. Is the
event handler executed?

Save your program.

Hands On Python 3: Events and Event Handlers 113

■ The first value in the bindtags list represents the ID of that specific widget.
The bindtag name for a specific widget always starts with a full stop.

■ The second value in each list represents the grouping (class) to which the
widget belongs.

■ The third entry is just a single full stop. This is the ID for the main, Toplevel
window.

■ The final entry in the list is the fixed term all.

The last two entries are the same for all widgets (other than the main window).

The bindtags list for any main window is (‘.’, ‘Tk’, ‘all’) which is the window’s ID (.),
the class to which it belongs (Tk) and the fixed term all.

We can discover the contents of a widget’s bindtags list using the bindtags()
method. For example, we could display the bindtags list for widget lab1 using the
line

print(lab1.bindtags())

So what’s so important about the bindtags list? When we add an event binding to a
widget, that binding is actually linked to an entry in the bindtags list.

When we bind an event to a widget, with a statement that starts
 but1.bind(...

what we are doing is actually binding that event to the first entry in that widget’s
taglist - its ID. Since every widget has a unique ID, only the calling widget is linked
to the event (see FIG-4.6).

Activity 4.15

Create a new program called UnderstandingBindtags.py containing a label and
two buttons and a text box.

Each widget should store its variable name in its text property. For example, if
we store the label’s ID in lab1, then the label’s text should be ‘lab1’.

Have the program display the bindtags list for the main window and each of its
four widgets.

Test and save your program.

FIG-4.6

Binding a Widget Name

.36138800 TButton all.
Bindtags list

Widget’s
own ID

but1

handler
code

event

Widget

Widget
maintains a
bindtags list

114 Hands On Python 3: Events and Event Handlers

When we start a statement with
but1.bind_class(‘TButton’,...

we are binding the event to EVERY widget that contains the term TButton in its
bindtags list. In effect, this means to every button in our application (see FIG-4.7).

The fact that the method is called by widget but1 is irrelevant - in fact, we could have
set up an event for all widgets in the TButton class by making the call from a Label
widget or the main window (root) neither of which belong to the TButton class

When we use
 bind_all(...

we are binding the event to every widget that contains the term ‘all’ in its bindtags
list.

Since every widget contains that value, the link is to every widget in the application,
including the main window (see FIG-4.8).

Using
root.bind(...

links an event to the main window (assuming we’ve called it root).

Now, since the main window’s tag name is ‘.’, and since every widget contains that
name in its taglist, we are effectively linking the event to every widget (see FIG-4.9).

FIG-4.7

Binding the Widget Class
Name

.36138800 TButton all.
Bindtags list

but1 but2

.36138800 TButton all.
Bindtags list

handler
code

event event

FIG-4.8

Binding ‘all’

X

.36138800 TButton all.
Bindtags list

but1 but2

.44461872 TButton all.
Bindtags list

.2734064 TLabel all. Tk

Bindtags list

all.
Bindtags list

lab1 root

handler
code

eventevent event
event

Hands On Python 3: Events and Event Handlers 115

The difference between ‘all’ and ‘.’ only arises when an application has more than
one main window.

When an event occurs, the widget in focus performs the following logic:

FOR each tag in bindtags list DO
	 IF	the	current	event	is	defined	for	this	tag	THEN
	 	 Execute	handler
	 ENDIF
ENDFOR

We can easily demonstrate this effect by modifying our previous program to display
the name of the widget that executes an event handler in the label. For example,
adding the lines

#***************************************
*** Event Handlers ***

def show_name(e):
 “““Displays widget name in label
 “““
 lab1[‘text’] = e.widget[‘text’]

and
#*** Add event to first button only ***
but1.bind(‘<Alt-z>’, show_name)

defines an event, Alt-z, and a handler linked to the first button in the program.

X

.36138800 TButton all.
Bindtags list

but1 but2

.44461872 TButton all.
Bindtags list

.2734064 TLabel all. Tk

Bindtags list

all.
Bindtags list

lab1 root

handler
code

eventevent event
eventFIG-4.9

Binding ‘.’

Activity 4.16

Modify UnderstandingBindtags.py by removing the calls to print() and
adding the lines given above at appropriate points in your code.

Run the program and give the first button focus. What happens when you press
Alt-z?

Give the second button focus and press Alt-z. What happens this time?

What happens when the text box has focus and Alt-z is pressed?

Save your program.

116 Hands On Python 3: Events and Event Handlers

As we should have expected, this time only the first button reacts to the event because
the event has been linked to the first entry in that button’s bindtags - that is, to its own,
unique ID.

This time we have linked all TButton class widgets to the event Alt-z. So, when a
widget of that class (a widget with that term in its bindtags list) gains focus, the event
is handled.

In the next Activity we’ll link the event Alt-z to the ‘all’ bindtag.

The final option we have is to bind an event to the ‘.’ bindtag.

We can bind to the ‘.’ bindtag in one of two ways. We could use the bind_class()
function because, despite its name, the bind_class() method can link to any name
in a bindtags list, not just the one that represents the widget’s class (grouping). This
allows us to write.

 but1.bind_class(‘.’,’<Alt-z>’, show_name)

but the more accepted way of achieving the result is to use root (the main window
name in our examples) and bind():

Activity 4.17

In UnderstandingBindtags.py change the binding for the event Alt-z so that it is
now linked to the TButton class rather than but1.

Run the program and give the first button focus. What happens when you press
Alt-z?

Give the second button focus and press Alt-z. What happens this time?

What happens when the text box has focus and Alt-z is pressed?

Save your program.

Activity 4.18

In UnderstandingBindtags.py change the existing binding statement the bind_
all() method.

Before we run the program, there’s a slight problem we need to cope with. If the
main window executes the event handler, it doesn’t have a text attribute so we
would get an error situation. To stop this happening, we can change the handler
code to deal with the window separately:

 def show_name(e):
 “““ Displays widget name in label
 “““
 if e.widget == root:
 lab1[‘text’] = ‘root’
 else:
 lab1[‘text’] = e.widget[‘text’]

How does each widget react to Alt-z when it has focus?

Save your program.

Hands On Python 3: Events and Event Handlers 117

 root.bind(‘<Alt-z>’, show_name)

Remember the main window’s ID in the bindtags list is ‘.’ - the only ID that’s listed
in every other widget’s bindtags list - so it links the event to every other widget.

Linking an Event to More Than One Entry in the BindTag List

Another option we have is to link an event to more than one entry in a widget’s
bindtags list. For example, if we were to use the line

but1.bind(‘<Alt-z>’, show_name)
but1.bind_class(‘TButton’, ‘<Alt-z>’,show_name

we have created the situation which is represented visually in FIG-4.10

The diagram highlights the fact that, when widget but1 is in focus and the Alt-z key
combination is presssed, that event will trigger the execution of the code in show_
name() twice since two values in the bindtags list link the same event to the same
handler.

The program in FIG-4.11 is a variation on UnderstandingBindtags.py and
demonstrates the above situation by creating an event handler which increments a
global variable every time the handler is executed. The value of the global variable
is stored in the program’s label widget, so we can see how often the handler is
executed for a given event.

In this first version of the program the event Alt-z is linked only to the first button’s
ID.

Activity 4.19

In UnderstandingBindtags.py change the binding for the event Alt-z so that it
is now linked to the main window.

How does each widget react to Alt-z when it has focus?

Save your program.

FIG-4.10

Binding Multiple
Bindtags: Concept

.36138800 TButton all.
Bindtags list

Widget’s
own ID

Widget’s
class

Widget

but1

show_name
code

Alt-z Alt-z

Event
handler

Event Event

118 Hands On Python 3: Events and Event Handlers

FIG-4.11

Binding Multiple
Bindtags: Code

#*** Binding events to Multiple Tags ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#*** Global Variables ***
count = 0

#***************************************
*** Event Handlers ***

def add_to_count(e):
 “””Label shows value of count
 “””
 global count

 #*** Increment count ***
 count += 1
 #*** Display count’s value in label ***
 lab1[‘text’] =str(count)

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create label ***
lab1 = ttk.Label(root, text = “0”)
lab1.pack()

#*** Create two buttons ***
but1 = ttk.Button(root, text = “but1”)
but1.pack()
but2 = ttk.Button(root, text = “but2”)
but2.pack()

#*** Create a text box ***
rbut1 = ttk.Entry(root, text = “ent1”)
rbut1.pack()

#*** Add event to first button only ***
but1.bind(‘<Alt-z>’, add_to_count)

#*** Wait for events ***
root.mainloop()

Activity 4.20

Modify UnderstandingBindtags.py to match the code given in FIG-4.11.

What happens this time as each widget gains focus and Alt-z is pressed?

Save your program.

Hands On Python 3: Events and Event Handlers 119

So far, we just have a fairly standard response to the event Alt-z; only the first button
responds to the event and each event increments the count by 1.

BindTag Ordering

The order in which the bindtags are interrogated can be important and we can see this
if we try copying the contents of a text box to a label as demonstrated by the program
in FIG-4.12 where every keystroke within the text causes its contents to be copied to
the label.

Activity 4.21

Modify UnderstandingBindtags.py by adding a second binding for Alt-z (don’t
remove the original bind statement). This time, bind the event to the class
TButton.

What happens this time as each widget gains focus and Alt-z is pressed?

Now add a third binding for Alt-z, this time to ‘.’.

What happens this time as each widget gains focus and Alt-z is pressed?

Save your program.

FIG-4.12

Reordering the Bindtags
List

#*** Bindtag Order ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_label(e):
 “””Sets label to contents of text box
 “””
 lab1[‘text’] = ent1.get()

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create label ***
lab1 = ttk.Label(root, text = “Waiting...”)
lab1.pack()

#*** Create text box ***
ent1 = ttk.Entry(root)
ent1.pack()

#*** Bind text box to any key press ***
ent1.bind(‘<Key>’, change_label)

#*** Wait for events ***
root.mainloop()

120 Hands On Python 3: Events and Event Handlers

The bindtags() method can be used with parameters to reorder the bindtags. The
bindtags for the text box in the last program was with the widget first and it’s class
second:	(‘.36208112’,	‘TEntry’,	‘.’,	‘all’). We could reorder this tuple using the line

ent1.bindtags((‘TEntry’, ent1,’.’,’all’))

Note that the new order must be given as a tuple (not a list) and that the widget ID in
the tuple is given by specifying the variable, used earlier in the program to store the
widget ID.

In Activity 4.22 we saw how the contents of the label seemed to be one character
behind what had been typed, now the two values match. So what is going on?

The truth is that Tkinter automatically attaches a hidden event handler to a widget’s
grouping (the value defined by the widget’s class attribute). This handler does what
we would expect for that type of widget. In the case of an Entry widget, that means
it adds the typed character to the data displayed in the text box; in the case of a button,
it creates the depressed look when the button is clicked.

In the original set up for our text box (ent1), the handler attached to the widget’s ID
was run first and then the handler for the TEntry grouping was run later. Since it is
the handler for TEntry that is responsible for adding the character just typed we can
see that running the widget’s handler first is always going to mean we are one
character behind. By reversing the order of these two bindtags, we also reverse the
order in which their handlers are executed, meaning that the latest character is added
to the text box before we take the contents of that text box and copy it to the label.

It now becomes clear why the Button and Entry widgets that we regrouped as
TestGroup in an earlier program no longer responded to being clicked. This was
because the two objects no longer executed the hidden handlers associated with their
original groupings TButton and TEntry respectively.

This is why it’s not normally a good idea to change a widget’s grouping via the class
name.

Activity 4.22

Create a new file called TagOrder.py and enter the code given in FIG-4.12.

When you run the program and enter data in the text box, what is unusual about
the value displayed in the label?

Add a statement to display the bindtags for ent1 in the console window.

Test and save your program.

Activity 4.23

Modify TagOrder.py changing the order of the bindtags to match that given in
the example above. What happens when you run the program this time?

Save your program.

Hands On Python 3: Events and Event Handlers 121

Adding to a Widget’s Bindtag List

Although we now see it’s a bad idea to change a widget’s class grouping, it would be
nice to be able to group widgets without losing their default behaviour. Luckily, we
can easily do this by adding an entirely new bindtag entry to a widget’s list.

Returning to our GroupBindings.py program, we could remove the class definition in
the constructor and replace this with a bindtag of the same name. For example, we
could replace

but1 = ttk.Button(root, text = “TG button”, class_=‘TestGroup’)

with
but1 = ttk.Button(root, text = “TG button”)
but1.bindtags(but1,’TButton’,’.’,’all’, ‘TestGroup’)

We can see from the result of Activity 4.24 the method name bind_class() is more
than a little misleading since its real purpose is to bind to any widget whose bindtag
list contains the term defined in the first parameter.

Stopping BindTag Processing

There will be times when we’d like a greater control over how the bindtag list is
processed. For example, let’s assume a program contains a text box in which the user
is meant to type in numeric values only. One way to ensure that only numeric values
are entered is simply not to pass any non-numeric key presses to the hidden TEntry
handler.

The program in FIG-4.13 represents the first stage in a program that stops non-
numeric keys being accepted by a text box. The program contains a label and a text
box. The label displays the most recently pressed key, or an error message if that key
is not numeric. At this point, the text box displays all keys pressed (numeric and non-
numeric).

Activity 4.24

Reload GroupBindings.py (which we last looked at in Activity 14.4) and
modify the code so that but1 and ent1 no longer have class_ values in their
constructors but both have ‘TestGroup’ added to their bindtag lists.

Do both buttons and the text box now take focus when clicked?
Does the Alt-z event still work for both these widgets?

Save your program.

FIG-4.13

Stopping Bindtags List
Processing

#*** Controlling Text Box Entry ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

122 Hands On Python 3: Events and Event Handlers

What’s happening here is that the first bindtag in the text box’s list is executing the
show_key_pressed() handler which correctly detects that a non-numeric key has
been pressed, but then the TEntry bindtag is running the hidden, default handler for
that class which adds the pressed key to the text within the box.

break

What we would like to do is to stop the handler for TEntry being executed if show_
key_pressed() detected a non-numeric key. And this is done by having our handler
return the string ‘break’.

When a handler returns the term ‘break’ this breaks the run through the bindtags list
for the widget that called this handler. No other entries in the bindtags list are
processed.

FIG-4.13
(continued)

Stopping Bindtags List
Processing

def show_key_pressed(e):
 “””Label shows last numeric key pressed or error message
 “””
 #*** If numeric display it in label ***
 if e.char >= ‘0’ and e.char <= ‘9’:
 lab1[‘text’] = e.char
 else: # not numeric
 #*** Display error message ***
 lab1[‘text’] = “Not numeric”

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create label for key ***
lab1 = ttk.Label(root, text = “”)
lab1.pack()

#*** Create text box ***
ent1 = ttk.Entry(root)
ent1.pack()

#*** Handle every key press ***
ent1.bind(‘<Key>’, show_key_pressed)

#*** Wait for events ***
root.mainloop()

Activity 4.25

Create a new file called StoppingBindTags.py which implements the code given
in FIG-4.13.

Test the program by pressing both numeric and non-numeric keys.

Save the program.

Hands On Python 3: Events and Event Handlers 123

Unbinding
We can remove an event from a widget, making that widget no longer responsive to
that event using the widget’s unbind() method.

unbind(event) removes event from the calling widget.

The program in FIG-4.14 creates a label, a text box and a button. The label displays
a count of how many a’s have been entered in the text box. However, when the button
is pressed, the count is discontinued by unbinding the ‘a’ event defined for the text
box.

Activity 4.26

Modify StoppingBindTags.py by adding the line

 return ‘break’

as part of the else: option in show_key_pressed().

What happens this time when non-numeric keys are pressed?

Save the program.

FIG-4.14

Unbinding

#*** Unbinding ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#*** Global Variables ***
count = 0

#***************************************
*** Event Handlers ***

def add_to_count(e):
 “”” Increment count and update label
 “””
 global count

 count += 1
 lab1[‘text’] = str(count)

def deactivate():
 “””Unbind text box’s e count
 “””
 ent1.unbind(‘a’)

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

124 Hands On Python 3: Events and Event Handlers

Although this section has concentrated on keyboard events, much of what has been
written is also relevant to other event types. For example, we can add or rearrange
bindtags and unbind events just as easily when dealing with mouse or timed events.
The next sections of this chapter will cover the other types of events.

Summary
■ Some widgets can link an event to an event handler using their command

attribute.
■ Even when available, using the command option to link an event to a handler

has limitations.
■ Every widget has a bindtags list.
■ The entries in a bindtags list are used when binding an event and a event

handler to a widget.
■ A bindtags list contains:

 a unique ID for the widget to which it belongs.
 the name of the class to which the widget belongs
 ‘.’ entry signifying the parent widget
 ‘all’ entry

■ When an event occurs, Python interrogates the bindtags list for the widget
involved, and executes any handlers linked to that event for that bindtag
entry.

■ Use the widget’s bindtags() method to change the order of the entries in a
widget’s bindtag list.

■ Use the widget’s bindtags() method to specify the contents of a widget’s
bindtag list.

■ When using bindtags(), give the widget’s variable name to specify the
widget’s ID.

FIG-4.14
(continued)

Unbinding

#*** Create label ***
lab1 = ttk.Label(root, text=”0”)
lab1.pack()
#*** Create text box ***
ent1 = ttk.Entry(root)
ent1.pack()
ent1.bind(‘a’, add_to_count)

#*** Create button ***
but1 = ttk.Button(root,text=“Stop ‘a’ count”,command = deactivate)
but1.pack()

#*** Wait for events ***
root.mainloop()

Activity 4.27

Create a new file called Unbinding.py and implement the code given in FIG-
4.14.

Test and save the program.

Hands On Python 3: Events and Event Handlers 125

■ Using the bindtags() method allows new entries to be added to a bindtags
list.

■ Use bind() with arguments to link any widget to any event and to any
handler. bind() returns a reference to the event handler.

■ The bind() method links the event and handler specified to the widget’s ID
given in that widget’s bindtags list.

■ Use bind() without arguments to return a list of which events a widget is
linked to.

■ Use bind_all() to link all widgets to a specific event and handler.
■ Using bind_all() links the event and handler to the ‘all’ entry in every

widget’s bindtags list.
■ Use bind_class() to bind all widgets which contain a specified name in their

bindtags list to a given event and handler.
■ If an event handler returns the string ‘break’, the remainder of the calling

widget’s bindtags list is not processed, so any other handlers that should be
executed for this event are ignored.

■ Use the unbind() method to make a widget no longer respond to a specific
event.

■ Some keys are assigned symbolic names. (e.g. ‘Down’ for the down arrow
key)

■ Specific key press events are identified by the key’s letter (e.g. ‘a’).
■ Keys with symbolic names are enclosed in angled brackets (e.g. ‘<Down>’).
■ Use ‘<Key>’ to react to any key press.
■ The full format for identifying an event in the bind() argument list is

 event type event modifier event detail

■ Event types for keyboard events are:

 KeyPress
 KeyRelease

■ Event modifiers for keyboard events are:

 Alt
 Control
 Lock
 Shift
 Double
 Triple

 Any

■ Event details for keyboard events are:

 key letter
 key symbolic name

■ The event modifier and event detail can be separated by a space or hyphen
(e.g. ‘<KeyPress Alt-a>’)

■ When an event is linked to an event handler using bind(), the event handler
must be written with a parameter of class Event.

■ The Event object passed to an event handler, gives details of the widget
which has triggered the call to the event handler.

126 Hands On Python 3: Events and Event Handlers

■ Details within an Event object include:

 serial event number (incremented every time an event
 occurs)
 time time event occurred in milliseconds
 type code for event’s type
 widget reference to widget calling handler

 Keyboard-specific events details:
 char the key pressed (if printable ASCII)
 keycode the keycode value for the key pressed
 keysym the symbolic name for the key
 keysym_num the keysym num value for the key

Hands On Python 3: Events and Event Handlers 127

Mouse Events

Introduction
As well as triggering events from the keyboard, events can be triggered by the mouse
- either simply by moving the mouse pointer or clicking on the mouse buttons.
A set of event names and Event class attributes are defined for mouse-related events.

Event Names
Like keyboard events, a mouse event term can consists of an event modifier, an event
type and an event detail. The simplest of these contains only a type. Mouse movement
(without any mouse buttons being pressed) offers three options:

‘<Enter>’ this event occurs when the mouse pointer enters the
widget.

‘<Leave>’ this event occurs when the mouse pointer exits the
widget.

‘<Motion>’ this event occurs when the mouse pointer moves within
the widget.

Mouse events that make use of the mouse buttons are:

‘<1>’, ‘<2>’, ‘<3>’ these event names represent the pressing of the left
mouse button (‘<1>’), the centre button (‘<2>’), and the
right button (‘<3>’).
The term Button may be included in these event names,
if you wish, giving us ‘<Button-1>’, ‘<Button-2>’
and ‘<Button-3>’.

‘<Double-1>’, ‘<Double-2>’, ‘<Double-2>’
these events respond to the double clicking of the left,
right or centre buttons. Again you are free to add the
term Button immediately after the word Double.

‘<ButtonRelease-1>’, ‘<ButtonRelease-2>’, ‘<ButtonRelease-3>’
this event occurs when the specified mouse button is
released.

‘<B1-Motion>’, ‘<B2-Motion>’,‘<B3-Motion>’
this event occurs when the mouse is dragged with the
specified button held down.

‘<MouseWheel>’ this event occurs when the mousewheel is rotated.

Attributes in Event
The Event class holds a few additional attributes that reveal the state of the mouse
when an event occurs. These are

num contains the number of the mouse button pressed (1, 2,
3).

128 Hands On Python 3: Events and Event Handlers

x, y the coordinates of the mouse pointer measured from the
top-left corner of the widget.

x_root, y_root the coordinates of the mouse pointer measured from the
top-left corner of the screen.

state an integer giving the state of all the modifier keys. The
value of this variable can tell us which special keyboard
keys and mouse buttons are being pressed when a
mouse event occurs. The keys and their codes are (in
hexadecimal):

 Shift 0x00001
 Caps Lock 0x00002
 Ctrl 0x00004
 Num Lock 0x00008
 Left mouse button 0x00100
 Centre mouse button 0x00200
 Right mouse button 0x00400
 Alt (on left) 0x20000
 Alt (on right) 0x20004

 When more than one of these keys are pressed at the
same time, the value of state, is determined by ORing
the values of those keys. For example, pressing the left
mouse button and the Ctrl key, sets state to 0x00104.
The only combination that cannot be detected is right
Alt and Ctrl since 0x20004 OR 0x00004 is 0x20004,

delta this property returns the angle through which the mouse
wheel has been turned. A negative value is returned if
the wheel is rolled towards the user; a positive value if it
is rolled away from the user. Typically, returned values
seem to be -28 or +28.

The program in FIG-4.15 demonstrates all three of the mouse-move events (<Motion>,
<Enter> and <Leave>) by constantly displaying the mouse coordinates as it moves
within the main window and changing an image-based button from greyscale to
colour and back again as the mouse pointer moves over and away from the button.

FIG-4.15

Handling Mouse Events

#*** Mouse Movement Events ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def display_coordinates(e):
 “”” Displays the mouse coordinates in label
 “””
 lab1[‘text’] = ‘(‘+str(e.x)+’,’+str(e.y)+’)’

Hands On Python 3: Events and Event Handlers 129

FIG-4.15
(continued)

Handling Mouse Events

def change_to_colour(e):
 “””Makes button image colour
 “””
 but1[‘image’] = img1

def change_to_bw(e):
 “””Makes button image greyscale
 “””
 but1[‘image’] = img2

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Load images used ***
img1 = PhotoImage(file = ‘Triangle.gif’)
img2 = PhotoImage(file = ‘TriangleBW.gif’)

#*** Create label ***
lab1 = ttk.Label(root, text=”0”)
lab1.pack()

#*** Create button ***
but1 = ttk.Button(root, image = img2,)
but1.pack()

#*** Have button react to mouse pointer ***
but1.bind(‘<Enter>’, change_to_colour)
but1.bind(‘<Leave>’, change_to_bw)

#*** Have window react to mouse movement ***
root.bind(‘<Motion>’, display_coordinates)

#*** Wait for events ***
#***root.mainloop()

Activity 4.28

Create a new file called MouseEvents.py and implement the code given in FIG-
4.15.

Copy the two files Trinagle.gif and TriangleBW.gif into the program’s folder.

Run the program and check that the button’s image changes colour.

What happens to the displayed coordinates when the mouse pointer enters the
button?

Modify the program so that the mouse coordinates displayed are always relative
to the top left-corner of the main window - even when the mouse is within
the button. (HINT: Use root.winfo-x() and root.winfo_y() to retrieve the
window’s coordinates on the screen.)

Save the program.

130 Hands On Python 3: Events and Event Handlers

The program in FIG-4.16 uses the Place geometry manager to allow buttons to be
dragged to new positions within the window.

The repositioning makes use of the mouse coordinates as measured from the top-left
of the screen minus the position of the window on the screen. The window’s position
is modified slightly to take into account the size of the window’s frame.

Activity 4.29

Create a new file called ShowingStates.py and write a program that displays
which state-recorded keys have been pressed as the mouse moves within the
main window.

The pressed key names should be shown as the text of a label. For example, if
the Ctrl and Shift keys were pressed, the display should read Shift Ctrl.

Test and save the program.

FIG-4.16

Dragging Widgets

#*** Dragging Widgets ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def move_object(e):
 “””Reposition dragged widget
 “””
 e.widget.place(x = e.x_root-root.winfo_x()-8,
 y = e.y_root-root.winfo_y()-30)

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create 6 buttons with bindings to ***
#*** mouse drag ***
for c in range(6):
 lab = ttk.Button(root, text = str(c))
 lab.place(x = 0, y = 0)
 lab.bind(‘<B1-Motion>’, move_object)

#*** Wait for events ***
root.mainloop()

Activity 4.30

Create a new file called DraggingWidgets.py and implement the code shown in
FIG-4.16.

Test the program by dragging the buttons to various points on the screen.

Save the program.

Hands On Python 3: Events and Event Handlers 131

Widget Drawing Order

From the last program we can see that widgets may sit over each other with the most
recently created widget always being on top. We can change the order in which
widgets are drawn on the screen and thereby modify which widget appears on top of
an overlapping pile. If we think of the widgets as a deck of playing cards, this
adjustment can be likened to moving a card up (or down) within the deck.

All widgets (labels, buttons, etc.) contain two methods which affect that widget’s
drawing order. A widget which is drawn last will always appear on top of any other
widget(s) which it overlaps; a widget which is drawn first will be at the bottom of any
overlapping widgets.

lift() lifts the widget to the top of the ‘deck’, meaning that the
widget is drawn last.

lower() lowers the widget to the bottom of the ‘deck’, meaning
the widget is drawn first.

Using the Mouse Wheel

The mouse wheel is most often used to scroll a window or widget which is too small
for the elements it contains. We’ll see how to do this in a later chapter, but for now,
we’ll make use of the mouse wheel to resize a selected widget.

Summary
■ Use the event term ‘<Motion>’ to react to the mouse pointer movement.
■ Use the event term ‘<Enter>’ to react to the mouse pointer moving into a

widget space.
■ Use the event term ‘<Leave>’ to react to the mouse pointer moving out of a

widget space.

Activity 4.31

Modify DraggingWidgets.py by adding two new handlers, lift_widget() and
lower_widget() which modify the position of the calling widget. The handlers
should be triggered by the right and centre mouse buttons respectively (if you
don’t have three buttons, use a key/mouse button combination).

Test the program by overlapping buttons and then raising and lowering their
drawing order.

Save the program.

Activity 4.32

Modify DraggingWidgets.py, to detect the mouse wheel event. The associated
event-handler, resize(), should use the delta value to decide if the in-focus
button should be increased in width (positive delta value) or decreased in width
(negative delta value). The change in width should be one pixel.

Test and save the program.

132 Hands On Python 3: Events and Event Handlers

■ Use ‘<1>’ to react to the left mouse button being pressed.
■ Use ‘<2>’ to react to the centre mouse button being pressed.
■ Use ‘<3>’ to react to the right mouse button being pressed.
■ Use the terms ‘<Double-1>’ , ‘<Double-2>’ or ‘<Double-3>’ to react to

double clicks on the left, centre, or right mouse buttons.
■ Use the terms ‘<ButtonRelease-1>’ , ‘<ButtonRelease-2>’ or

‘<ButtonRelease-3>’ to react to release of the left, centre, or right mouse
buttons.

■ Use the terms ‘<B1-Motion>’ , ‘<B2-Motion>’ or ‘<B3-Motion>’ to react
to release of the mouse being dragged with the left, centre, or right mouse
buttons pressed.

■ The Event class contains the following details for mouse events:

 num {1, 2, 3} Gives the number of the mouse button pressed.

 x, y Gives the mouse pointer coordinates measured from the
top-left of the widget.

 x_root, y_root
Gives the mouse pointer coordinates measured from the
top-left of the screen.

 state an integer value giving the state of any modifier keys.
Values are:
 Shift 0x00001
 Caps Lock 0x00002
 Ctrl 0x00004
 Num Lock 0x00008
 Left mouse button 0x00100
 Centre mouse button 0x00200
 Right mouse button 0x00400
 Alt (on left) 0x20000
 Alt (on right) 0x20004

 delta the angle through which the mouse wheel has been
moved.

■ A widget’s drawing order determines if it appears ‘above’ or ‘below’ other,
overlapping widgets.

■ Use lift() to promote a widget’s drawing order.
■ Use lower() to demote a widget’s drawing order.

Hands On Python 3: Events and Event Handlers 133

Widget Events

Introduction
Some events are triggered by the user resizing, moving a widget, or changing the
stacking order.

Event Names
‘<Configure>’ this event occurs if a widget is moved or has a property

changed.

‘<Expose>’ this event occurs when the visibility of a widget
changes. For example, if a change in stacking order
results in more or less of the widget being displayed.

‘<FocusIn>’ this event occurs when a widget gains focus.

‘<FocusOut>’ this event occurs when a widget has just lost focus.

Activity 4.33

Modify DraggingWidgets.py by adding a label. The label should take on the
value “Reconfigured” plus the text within the widget when the Configure event
occurs.

Test the program by moving and resizing the buttons.

Save the program.

Activity 4.34

Modify DraggingWidgets.py so that the label takes on the value “Exposure ”
plus the text within the widget when the Expose event occurs.

Test and save the program.

Activity 4.35

Modify DraggingWidgets.py so that the label takes on the value “Focus in : ”
plus the text within the widget when the FocusIn event occurs.

Test and save the program.

Activity 4.36

Modify DraggingWidgets.py so that the label takes on the value “Focus out : ”
plus the text within the widget when the FocusOut event occurs.

Test and save the program.

134 Hands On Python 3: Events and Event Handlers

We can see from the last two Activities that these two events can be used to tell us
which widget has just gained focus and which has just lost it.

‘<Destroy>’ this event occurs as a widget is destroyed.

The program in FIG-4.17 contains a label and a button. Pressing the button, deletes
the label. This, in turn, displays a message box to say that the label has been deleted.

FIG-4.17

Deleting Widgets

#*** Destroy ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk
from tkinter import messagebox

#***************************************
*** Event Handlers ***

def delete_label():
 “”” Deletes label
 “””
 lab1.destroy()

def destroy_alert(e):
 “”” Displays message box when label is deleted
 “””
 messagebox.showinfo(message = “Label has been deleted”)

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create label ***
lab1 = ttk.Label(root, text = “Here today”)
lab1.pack()
#*** Let label detect its own destruction ***
lab1.bind(‘<Destroy>’, destroy_alert)

#*** Create button to delete label ***
but1 = ttk.Button(root, text = “Destroy Label”, command =
delete_label)
but1.pack()

#*** Wait for events ***
root.mainloop()

Activity 4.37

Create a new file called DeletingWidgets.py which contains the code given in
FIG-4.17.

Test and save the program.

Hands On Python 3: Events and Event Handlers 135

Event Types

One of the attributes of the Event class is type which specifies the type of event that
has just occurred. Each code and its meaning is listed in FIG-4.18.

Note: Although the type attribute contains only numeric values, it is stored as a
string.

Protocols

Tkinter can also bind to events within the operating system’s window manager. This
is known as protocol handler. There are a set of protocol names, the most common of

FIG-4.18

Event Codes

2 KeyPress

3 KeyRelease

4 ButtonPress

5 ButtonRelease

6 Motion

7 Enter

8 Leave

9 FocusIn

10 FocusOut

12 Expose

15 Visibility

17 Destroy

18 Unmap

19 Map

21 Reparent

22 Con�gure

24 Gravity

26 Circulate

28 Property

32 ColorMap

36 Activate

37 Deactivate

38 Mousewheel

Code Event

Activity 4.38

Modify DraggingWidgets.py so that ‘<Expose>’, ‘<Configure>’ and
‘<FocusIn>’ events are handled as before but using only a single function for
all three events. Remove the code for the ‘<FocusOut>’ event.

Test and save the program.

136 Hands On Python 3: Events and Event Handlers

which is the string “WM_DELETE_WINDOW” which occurs when a window is being
closed.

Rather than use one of the bind methods to link a protocol to a handler, we use the
widget’s protocol() method:

protocol(name, function)
This method causes function to be executed when
protocol name is flagged by the operating system.

The program in FIG-4.19 displays a dialog box to allow the user to cancel the closure
of the main window.

Summary
■ An event can be triggered by a widget being moved, resized, or redrawn.
■ The ‘<Configure>’ event occurs when a widget is moved or has a property

value changed.

FIG-4.19

Closing a Window

#*** Close Window Second Chance ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk
from tkinter import messagebox

#***************************************
*** Event Handlers ***

def last_chance():
 “”” Gives option to cancel window closure
 “””
 if messagebox.askokcancel(“Quit”, “Are you sure you want to
 quit?”):
 root.destroy()

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Link window closure to second chance option ***
root.protocol(“WM_DELETE_WINDOW”, last_chance)

#*** Wait for events ***
root.mainloop()

Activity 4.39

Create a new file called Closing.py which contains the code given in FIG-4.19.

Test and save the program.

Hands On Python 3: Events and Event Handlers 137

■ The ‘<Expose>’ event occurs when the visibility of a widget changes.
■ The ‘<FocusIn>’ event occurs when a widget gains focus.
■ The ‘<FocusOut>’ event occurs when a widget loses focus.
■ The ‘<Destroy>’ event occurs when a widget is deleted.
■ Use the Event class’s type property to discover what type of event has

occurred.
■ Use a widget’s protocol() method to link a handler to an operating system’s

event.

138 Hands On Python 3: Events and Event Handlers

Timer Events

Introduction
The final group of events are triggered by the passage of time. A timed event can be
activated at a specific point in time after the program has started or at set time
intervals. Every widget class (including the main window) has a set of methods
which set up timed events. Timed events are often known as alarms.

Timed Methods
after(delay, function[, *paras])

The after() method calls a function (function) after delay milliseconds. If the
function being called requires parameters, these can be included in the parameter list
after the function name. A typical call to this method could be

 root.after(1000,change_label,“One second”)

which states that the function change_label() is to be executed after 1 second.

The program in FIG-4.20 changes the contents of a label to “Three seconds” after
three seconds have passed.

Notice that the event-handler does not take an Event object parameter.

FIG-4.20

A Times Event

#*** A Timed Event ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_label(txt):
 “””Changes label’s text
 “””
 lab1[‘text’] = txt

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Add a label ***
lab1 = ttk.Label(root, text = “Waiting”)
lab1.pack()

#*** After 3 seconds, change label’s text ***
root.after(3000, change_label, “Three seconds”)

#*** Wait for events ***
root.mainloop()

Hands On Python 3: Events and Event Handlers 139

As we can see from Activity 4.40, the event occurs only once after the specified time
has elapsed. If we want a timed event to occur at regular intervals, then we need to
place another call to root.after() inside the event handler.

In the next event handler, the label’s contents have a plus symbol (+) added every two
seconds:

def change_label():
 “““Adds + symbol to label’s string every 2 secs
 “““
 lab1[‘text’] += ”+”
 #*** Reschedule event ***
 root.after(2000, change_label)

The after() method returns a type of reference to the last event (called an alarm id).
We can see this if we include a print() call in the last part of the handler, changing
the final line to

 print(root.after(2000, change_label))

after_cancel(event_id)

Our last program would run on forever, continually adding plus characters to the end
of the string. However. if we want to eventually disable the timed event, we can do
so by executing the object’s after_cancel() method.

To do this we must save the value returned by the call to after() which is required
as the parameter to after_cancel().

Activity 4.40

Start a new project Timing.py and enter the code given in FIG-4.20.

Test and save your program.

Activity 4.41

Modify Timing.py so that the label begins with an empty string and has a plus
symbol added every two seconds.

Run the program. Do the string’s contents grow longer over time? When does
the string stop getting longer?

Save your program.

Activity 4.42

Modify Timing.py so that the last line of the event handler displays the value
returned by the call to root.after().

Run the program and observe the values returned.

Save your program.

140 Hands On Python 3: Events and Event Handlers

In FIG-4.21 we have a label showing the time in minutes and seconds. The label’s
text continues to update until the button is pressed; timing then stops and the time’s
text turns red.

 FIG-4.21

Stopping a Repeating
Timed Event

*** Stopping a Timed Event ***

*** Import Modules ***
from tkinter import *
from tkinter import ttk

*** global variables ***
time = 0 # Holds elapsed time
lab_timer = None # Timed event id

#**************************************
*** Event Handlers ***

def change_time():
 “““Changes the text within the label to show time
 “““
 global time, lab_timer

 #*** Add 1 sec to time ***
 time +=1
 #*** Format the label’s text ***
 lab1[“text”] = “{}:{}{}”.format(time // 60, time % 60 // 10,
 time % 60 %10)
 #*** Make another call to timed event saving the ID ***
 lab_timer = lab1.after(1000, change_time)

#*** Event handler for Button pressed ***
def stop_time():
 “““Stops timed event handler when button pressed
 “““
 global lab_timer

 #*** Cancel label’s timer event (ID as parameter) ***
 lab1.after_cancel(lab_timer)
 #*** Change time label text colour to red ***
 lab1[‘foreground’]=”red”

*** GUI Layout ***

#*** Create window ***
wnd = Tk()
wnd.geometry(“300x120+200+100”)

#*** Add a label ***
lab1 = ttk.Label(wnd, text=”0:00”)
lab1.pack()

#*** Add a button ***
but1 = ttk.Button(wnd, text = ”Stop”, command = stop_time)
but1.pack()

#*** After 1 second update label ***
lab1.after(1000, change_time)

#*** Wait for events ***
wnd.mainloop()

Hands On Python 3: Events and Event Handlers 141

Summary
■ An event can be triggered by the passage of time.
■ Use after() to execute an event handler after a given amount of time has

passed.
■ To have a time-related handler execute repeatedly, the handler itself must

make another call to after().
■ All event handlers return a reference to the last event. This is known as the

alarm id.
■ Use after_cancel() to stop a repeating timed event.

Activity 4.43

Start a new file StopTime.py and enter the code given in FIG-4.21

Test and save your project.

142 Hands On Python 3: Events and Event Handlers

Virtual Events

Introduction
When we make use of the command option in a Button widget to link a handler to the
pressing of that button, we are, in fact, binding the handler to either the clicking of
the mouse button when the pointer is over the button, or the pressing of the space bar
when the button has focus.

If we want a widget to react to two or more normal events, each event executing the
same handler, then it may be worth the effort to create a virtual event.

Virtual Event Methods
event_add()

To create a virtual event we must call a widget’s event_add() method, giving the
name of our newly created event. That name must be enclosed in double angled
brackets. For example, let’s say we want to create a virtual event for a Button widget
called but1. The virtual event is to be called BPress and is triggered when the left
mouse button is pressed, or the pressing of the Return key (when the widget has
focus). To set this up, we would use the line

root.event_add(‘<<BPress>>’,’<Button-1>’, ’<KeyPress Return>’)

After it is created, the virtual event can be linked to any widget in the program using
one of the standard bind methods:

 but1.bind(‘<<BPress>>’, press_handler)

The program in FIG-4.22 creates a label and three buttons with the buttons responding
to the BPress virtual event as defined above. Pressing a button changes the colour of
the label’s text.

FIG-4.22

Using a Virtual Event

#*** Using a Virtual Event ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_colour(e):
 ‘’’Changes the text colour of lab1 to that
 given as text on button, e
 ‘’’
 lab1[‘foreground’] = e.widget.cget(‘text’)
#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘320x180+500+500’)

#*** Create a Virtual event ***
#*** for mouse button 1 or return key ***

Hands On Python 3: Events and Event Handlers 143

event_delete()

If we wish to remove one or more of the native events from a virtual event, then we
can use the event_delete() method. For example, to delete the mouse button option
from the virtual event BPress, we would use the line

 but1.event_delete(‘<<BPress>>’,’<Button-1>’)

If all native events are removed from a virtual event, then that event is no longer
triggered.

event_info()

To find out what virtual events have been defined within a program, or what native
events are currently linked to a virtual event, use event_info().

When used without an argument, this method returns a list of all virtual events that
have been defined.

FIG-4.22
(continued)

Using a Virtual Event

root.event_add(‘<<BPress>>’, ‘<Button-1>’, ‘<KeyPress Return>’)

#*** Create label ***
lab1 = ttk.Label(root, text = ‘Changes colour’)
lab1.pack(side = ‘top’)

Create three buttons all linked to the virtual event ***
but1 = ttk.Button(root, text = ‘red’)
but1.pack(side = ‘left’)
but1.bind(‘<<BPress>>’, change_colour)

but2 = ttk.Button(root, text = ‘green’)
but2.pack(side = ‘left’)
but2.bind(‘<<BPress>>’, change_colour)

but3 = ttk.Button(root, text = ‘blue’)
but3.pack(side = ‘left’)
but3.bind(‘<<BPress>>’, change_colour)

#*** Wait for events ***
root.mainloop()

Activity 4.44

Start a new file VirtualEvent.py and enter the code given in FIG-4.22.

Test and save your project.

Activity 4.45

Add a new button to VirtualEvent.py. This button, when pressed (use the normal
command option, not Bpress), should remove the Return key option from the
Bpress virtual event. Call the new handler remove_return().

Test and save your project.

144 Hands On Python 3: Events and Event Handlers

When the name of a virtual event is supplied as a parameter, the native events
currently linked to that virtual event are returned. If the virtual event does not exist,
None is returned.

Summary
■ A virtual event links a identifying name to a set of native events.
■ Virtual event names must be enclosed in double angled brackets.
■ Use a widget’s event_add() method to create a virtual event.
■ Once created a virtual event can be linked to any widget using the standard

bind methods.
■ Use the event_delete() method to remove a native event from those events

associated with a named virtual event.
■ Without parameters, use event_info() to list all virtual events defined within

a program.
■ With a parameter identifying an existing virtual event, use event_info() to

retrieve the native events currently linked to that virtual event.

Activity 4.46

In the handler created for the fourth button in VirtualEvent.py, add instructions
to display in the console window the native events linked to BPress before and
after the removal of the Return key press.

Test and save your project.

Hands On Python 3: Events and Event Handlers 145

Forcing an Event

event_generate()

We don’t have to wait for an event to occur to have it’s handler executed. Instead we
can call the method event_generate()which fools the program into thinking that a
specified event has occurred.

The method requires the name of the event that is to be triggered as its first argument.

Let’s say we want the remove_return() handler in VirtualEvent.py to also set the
colour of the text to blue, we could do this by forcing a call to the event BPress for
but3 within the handler using the line

but3.event_generate(‘<<BPress>>’)

We can also set some of the attributes of the Event object that is passed to an event
handler linked to a bind statement. For example, let’s assume that, in VirtualEvent.
py, we have changed the change_colour() handler so that the label’s text displays the
time at which the event occurred. The new code would be

def change_colour(e):
 “””Changes the text colour of lab1 to that
 given as text on button, e
 “””
 lab1[‘foreground’] = e.widget.cget(‘text’)
 lab1[‘text’] = e.time

We can set a time value when we make the call to event_generate():
but3.event_generate(‘<<BPress>>’, time = 12)

This value for time will now be passed to change_colour() within the e parameter.

Activity 4.47

In the handler created for the fourth button in VirtualEvent.py, remove the
print() statements then add the line given above at the end of the function.

What happens when the fourth button is pressed?

Save your project.

Activity 4.48

In VirtualEvent.py, modify change_colour() to match the code given above.

Run the program and observe the text displayed when each of the four buttons
is pressed.

What value is displayed when the fourth button is pressed?

Save your project.

146 Hands On Python 3: Events and Event Handlers

Summary
■ Use a widget’s event_generate() method to trigger an event to which the

widget is already bound.
■ The event_generate() method can be given additional parameters to set

various aspects of the Event object being passed to the event handler.

Activity 4.49

In VirtualEvent.py, modify the call to event_generate() so that the time value
is set to 140000.

Run the program and observe the text displayed when each of the four buttons
is pressed.

What value is displayed when the fourth button is pressed?

Save your project.

Hands On Python 3: Events and Event Handlers 147

Solutions
Activity 4.1

When you first press the b key nothing happens (unless you
have previously given the button focus).

After the button has focus, pressing the b key, causes the text
within the label to change.

Modified code for KeyboardBinding.py:
#****** Keyboard Events ******

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_label():
 “””Changes the label contents
 “””
 lab1[‘text’] = “‘a’ key pressed”

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()

#*** Add Label ***
lab1 = ttk.Label(root, text = “Waiting...”)
lab1.pack()
#*** Add button ***
but1 = ttk.Button(root, text = “Give Focus”)
but1.pack()

#*** Make button react to a key being pressed ***
but1.bind(‘a’,change_label)

#*** Wait for events ***
root.mainloop()

Now the program reacts to the a key being pressed rather
than the b key.

Activity 4.2
To have the event linked to a capital A, we need only change
the line

but1.bind(‘a’,change_label)

to
but1.bind(‘A’,change_label)

Activity 4.3
If we change the call to bind() to read

but1.bind(‘ab’,change_label)

then we need to press the a key followed by the b key to have
the event take place. Pressing b then a will not trigger the
event.

Activity 4.4
Now the bind() calls need to be

but1.bind(‘a’,change_label)
but1.bind(‘b’,change_label)

With this code, pressing either a or b will trigger the event.

Activity 4.5
Modified code for KeyboardBinding.py:

#****** Keyboard Events ******

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_label(e):
 “””Changes the label contents
 “””
 lab1[‘text’] = “‘a’ key pressed”

def change_screen(e):
 “””Changes the background colour of the main
 window to red
 “””
 root[‘background’] = ‘red’

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()

#*** Add Label ***
lab1 = ttk.Label(root, text = “Waiting...”)
lab1.pack()
#*** Add button ***
but1 = ttk.Button(root, text = “Give Focus”)
but1.pack()

#*** Make key a change label and window colour ***
but1.bind(‘a’, change_label)
but1.bind(‘a’, change_screen, ‘+’)

#*** Wait for events ***
root.mainloop()

Without the + symbol in the last bind() call, the new event
handler for a replaces the earlier one, meaning that the a key
changes only the screen colour but not the label contents.

With the + symbol added, both event handlers are run when
the a key is pressed.

Activity 4.6
Modified code for KeyboardBinding.py :

#****** Keyboard Events ******

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_label(e):
 “””Changes the label contents
 “””
 lab1[‘text’] = “‘a’ key pressed”

def change_screen(e):
 “””Changes the background colour of the main
 window to red
 “””
 root[‘background’] = ‘red’

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()

#*** Add Label ***
lab1 = ttk.Label(root, text = “Waiting...”)
lab1.pack()
#*** Add button ***

148 Hands On Python 3: Events and Event Handlers

but1 = ttk.Button(root, text = “Give Focus”)
but1.pack()

#*** Make key ‘a’ change label text and key ‘b’ the
window colour ***
but1.bind(‘a’, change_label)
but1.bind(‘b’, change_screen)

#*** Display events to which but1 is bound ***
print(but1.bind())

#*** Wait for events ***
root.mainloop()

The program displays (‘b’, ‘a’).

Activity 4.7
Modified code for KeyboardBinding.py:

#****** Keyboard Events ******

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_label(e):
 “””Changes the label contents
 “””
 lab1[‘text’] = “A key pressed”

def change_screen(e):
 “””Changes the background colour of the main
 window to red
 “””
 root[‘background’] = ‘red’

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()

#*** Add Label ***
lab1 = ttk.Label(root, text = “Waiting...”)
lab1.pack()
#*** Add button ***
but1 = ttk.Button(root, text = “Give Focus”)
but1.pack()

#*** Make key a change label ***
#*** and Delete key change window colour ***
but1.bind(‘a’, change_label)
but1.bind(‘<Delete>’, change_screen)

#*** Wait for events ***
root.mainloop()

Activity 4.8
Binding code should be changed to

#*** Make key a change label ***
#*** and any key change window colour ***
but1.bind(‘a’, change_label)
but1.bind(‘<Key>’, change_screen)

Using ‘<Key>’ binds all keys - except those previously
assigned to this object. So pressing a changes the label’s
contents, not the window background colour. Every other key
will change the colour.

Activity 4.9
Modified code for KeyboardBinding.py:

#****** Keyboard Events ******

#*** Import modules ***
from tkinter import *

from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_label(e):
 “””Changes the label contents
 “””
 lab1[‘text’] = “A key pressed”

def change_screen(e):
 “””Changes the background colour of the main
 window to red
 “””
 root[‘background’] = ‘red’

def change_screen_white(e):
 “””Changes the background colour of the main
 window to white
 “””
 root[‘background’] = ‘white’

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()

#*** Add Label ***
lab1 = ttk.Label(root, text = “Waiting...”)
lab1.pack()
#*** Add button ***
but1 = ttk.Button(root, text = “Give Focus”)
but1.pack()

#*** Make key a change label ***
#*** and any key change window colour ***
but1.bind(‘a’, change_label)
but1.bind(‘<Key>’, change_screen)
but1.bind(‘<KeyRelease Delete>’,
change_screen_white)

#*** Wait for events ***
root.mainloop()

Activity 4.10
In KeyboardBinding.py, change the line

but1.bind(‘<Key>’, change_screen)

to
but1.bind(‘<Alt-z>’, change_screen)

Activity 4.11
No solution required.

Activity 4.12
Code for Disabling.py:

#*** Using Attributes from the Event class ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def disable(e):
 “””Disables the calling widget
 “””
 e.widget[‘state’]= ‘disabled’

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create six buttons ***
for c in range(6):
 temp = ttk.Button(root, text = c)

Hands On Python 3: Events and Event Handlers 149

 temp.pack()
 temp.bind(‘<Button-1>’,disable)

#*** Wait for events ***
root.mainloop()

Activity 4.13
In KeyboardBinding.py, have the window colour change to
red irrespective of the button having focus, change the line

but1.bind(‘<Alt-z>’, change_screen)

to
but1.bind_all(‘<Alt-z>’, change_screen)

Activity 4.14
Only the second button gains focus when clicked on.

All widgets can gain focus using the Tab key.

Data cannot be entered in the textbox.

The event handler executes when the Alt-z keys are pressed
and either the first button or textbox have focus.

Activity 4.15
Code for UnderstnadingBindtags.py:

#*** Binding Groupings ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Add ungrouped Label ***
lab1 = ttk.Label(root, text=“Awaiting an event ...”)
lab1.pack()

#*** Add TestGroup button ***
but1 = ttk.Button(root, text = ‘but1’)
but1.pack()

#*** Add ungrouped button ***
but2 = ttk.Button(root, text = ‘but2’)
but2.pack()

#*** Add TestGroup text box ***
ent1 = ttk.Entry(root, text = ‘ent1’)
ent1.pack()

#*** Display bindtags for window and each widget ***
print (“Bindtags for root : “,root.bindtags())
print (“Bindtags for lab1 : “,lab1.bindtags())
print (“Bindtags for but1 : “,but1.bindtags())
print (“Bindtags for but2 : “,but2.bindtags())
print (“Bindtags for ent1 : “,ent1.bindtags())

#*** Wait for events ***
root.mainloop()

This produces the following results (the first value in your lists
may be different).

Bindtags	for	root	:		(‘.’,	‘Tk’,	‘all’)
Bindtags	for	lab1	:		(‘.6795664’,	‘TLabel’,	‘.’,	‘all’)
Bindtags	for	but1	:		(‘.36396720’,	‘TestGroup’,	‘.’,	‘all’)
Bindtags	for	but2	:		(‘.44649360’,	‘TButton’,	‘.’,	‘all’)
Bindtags	for	ent1	:		(‘.44649392’,	‘TestGroup’,	‘.’,	‘all’)

Activity 4.16
Modified code for UnderstnadingBindtags.py:

#*** Binding Groupings ***

#*** Import modules ***

from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def show_name(e):
 “””Displays widget name in label
 “””
 lab1[‘text’] = e.widget[‘text’]

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Add ungrouped Label ***
lab1 = ttk.Label(root, text=“Awaiting an event ...”)
lab1.pack()

#*** Add TestGroup button ***
but1 = ttk.Button(root, text = ‘but1’)
but1.pack()

#*** Add ungrouped button ***
but2 = ttk.Button(root, text = ‘but2’)
but2.pack()

#*** Add TestGroup text box ***
ent1 = ttk.Entry(root, text = ‘ent1’)
ent1.pack()

#*** Add event to first button only ***
but1.bind(‘<Alt-z>’, show_name)

#*** Wait for events ***
root.mainloop()

The Alt-z combination if only effective when the first button
(but1) has focus.

Activity 4.17
The only change to the program is that the line

but1.bind(’<Alt-z>’, show_name)

is changed to
but1.bind_class(‘TButton’,’<Alt-z>’, show_name)

Now both buttons (which are members of the TButton class)
react to the Alt-z key press by changing the contents of the
label.

The text box does not react to Alt-z.

Activity 4.18
Modified code for UnderstnadingBindtags.py:

#*** Binding Groupings ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def show_name(e):
 “”” Displays widget name in label
 “””
 if e.widget == root:
 lab1[‘text’] = “root”
 else:
 lab1[‘text’] = e.widget[‘text’]

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

150 Hands On Python 3: Events and Event Handlers

#*** Add ungrouped Label ***
lab1 = ttk.Label(root, text=“Awaiting an event ...”)
lab1.pack()

#*** Add TestGroup button ***
but1 = ttk.Button(root, text = ‘but1’)
but1.pack()

#*** Add ungrouped button ***
but2 = ttk.Button(root, text = ‘but2’)
but2.pack()

#*** Add TestGroup text box ***
ent1 = ttk.Entry(root, text = ‘ent1’)
ent1.pack()

#*** Add event to all widgets ***
but1.bind_all(‘<Alt-z>’, show_name)

#*** Wait for events ***
root.mainloop()

Now all widgets (excluding the label, which cannot take
focus) respond to the Alt-z keys.

Activity 4.19
To link the Alt-z event to the main window we need to
change the line

but1.bind_all(‘<Alt-z>’, show_name)

to
but1.bind_class(‘.’,’<Alt-z>’, show_name)

Since all the widgets are children of the main window (and
have ‘.’ in their bindtags list) they still respond to Alt-z.

Activity 4.20
When the first button has focus, every time Alt-z is pressed,
the count displayed in the label is incremented.

Activity 4.21
The first modification means that the bind statements should
now read

#*** Add event to first button and TButton class ***
but1.bind(‘<Alt-z>’, add_to_count)
but1.bind_class(‘TButton’, ‘<Alt-z>’, add_to_count)

The event is now linked to two entries in but1’s bindtags
list: the widget’s name and TButton, so when that button has
focus, and Alt-z is pressed, the event handler is executed
twice - once for each link.

The second button, but2, links the event only to TButton, so
when it has focus, pressing Alt-z causes the event handler to
be executed only once.

The second modification adds another line to the bind
statements:

#*** Add event to first button, TButton class and the
main window ***
but1.bind(‘<Alt-z>’, add_to_count)
but1.bind_class(‘TButton’, ‘<Alt-z>’, add_to_count)
but1.bind_class(‘.’, ‘<Alt-z>’, add_to_count)

Now the first button has three entries in its bindtags list that
are linked to the event Alt-z, the second button has two, the
text box one, and the main window one.

The count is incremented by the number of links the in-focus
widget has to Alt-z.

Activity 4.22
Although the handler copies the contents of the text box to
the label, the label is always one character ‘behind’ the text
box.

To display the text box’s bindtags list we require the code
#*** Display the text box’s bindtags list ***
print(ent1.bindtags())

This displays a list similar to

 (‘.36057008’, ‘TEntry’, ‘.’, ‘all’)

Activity 4.23
Modified code for TagOrder.py:

#*** Bindtag Order ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_label(e):
 “””Sets label to contents of text box
 “””
 lab1[‘text’] = ent1.get()

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create label ***
lab1 = ttk.Label(root, text = “Waiting...”)
lab1.pack()

#*** Create text box ***
ent1 = ttk.Entry(root)
ent1.pack()
#*** Reorder bindtags ***
ent1.bindtags((‘TEntry’, ent1, ‘.’, ‘all’))

#*** Bind text box to any key press ***
ent1.bind(‘<Key>’, change_label)

#*** Display the text box’s bindtags list ***
print(ent1.bindtags())

#*** Wait for events ***
root.mainloop()

When the program is run this time the contents of the label
are an exact match for that of the text box.

In the console window we can see the new order of the
bindtags list.

Activity 4.24
Modified code for GroupBindings.py:

#*** Binding Groupings ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_label(e):
 “””Changes the label contents
 “””
 lab1[‘text’] = “Changed by a TestGroup widget”

#***************************************
*** GUI Layout ***

Hands On Python 3: Events and Event Handlers 151

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Add ungrouped Label ***
lab1 = ttk.Label(root, text=“Awaiting an event ...”)
lab1.pack()

#*** Add TestGroup button ***
but1 = ttk.Button(root, text = “TG button”)
but1.pack()
#*** Add TestGroup to bindtags list ***
but1.bindtags((but1, ‘TButton’, ‘.’, ‘all’,
‘TestGroup’))

#*** Add ungrouped button ***
but2 = ttk.Button(root, text = “Non-TG Button”)
but2.pack()

#*** Add TestGroup text box ***
ent1 = ttk.Entry(root)
ent1.pack()
#*** Add TestGroup to bindtags list ***
ent1.bindtags((ent1, ‘TEntry’, ‘.’, ‘all’,
‘TestGroup’))

#*** Change label if Alt-z pressed when a ***
#*** TestGroup widget has focus ***
but1.bind_class(‘TestGroup’,’<Alt-z>’, change_label)

#*** Wait for events ***
root.mainloop()

The button and text box now operate normally but also react
to the Alt-z event.

Activity 4.25
The program correctly displays a copy of each numeric key
pressed and an error message if any non-numeric character
is entered.

Activity 4.26
The handler should now be coded as:

def show_key_pressed(e):
 “””Label shows last numeric key pressed or error
 message
 “””
 #*** If numeric display it in label ***
 if e.char >= ‘0’ and e.char <= ‘9’:
 lab1[‘text’] = e.char
 else: # not numeric
 #*** Display error message ***
 lab1[‘text’] = “Not numeric”
 return ‘break’

No non-numeric characters appear within the text box.

Activity 4.27
No solution required.

Activity 4.28
Mouse coordinates are relative to the top-left corner of the
widget in which it is moving. Initially, this is the main
window, but when the mouse pointer moves over the button,
the coordinates are from the top-left corner of that button and
so the numbers, become much smaller.

To have the coordinates always measured from the top-left
of the main window, irrespective of the mouse’s position
we need to use the screen coordinates (from x_root and
y_root) minus the window’s coordinates (returned by root.
winfo_x()and root.winfo_y()).

The display_coordinates() handler’s code becomes:
lab1[‘text’] = ‘(‘+str(e.x_root-root.winfo_x())
+’,’+str(e.y_root-root.winfo_y())+’)’

This gives us the coordinates as measured from outside the
window’s borders. To produce coordinates where (0,0) is the
top-left corner within the window borders, the we need to
subtract 8 pixels from the x value and 30 from the y value (as
measured using Windows 7).

Activity 4.29
Code for ShowingStates.py:

#*** Mouse Key State Events ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def display_states(e):
 “”” Displays the keyboard button pressed when
 a mouse motion event occurs
 “””
 #*** Create an empty string ***
 txt = “”
 #*** Add text for any key found ***
 if e.state & 0x00001:
 txt = txt + “Shift”
 if e.state & 0x00002:
 txt = txt + “ Caps Lock”
 if e.state & 0x00004:
 txt = txt + “ Ctrl”
 if e.state & 0x00008:
 txt = txt + “ Num Lock”
 if e.state & 0x00100:
 txt = txt + “ Left Mouse”
 if e.state & 0x00200:
 txt = txt + “ Centre Mouse”
 if e.state & 0x00400:
 txt = txt + “ Right Mouse”
 if e.state & 0x20000:
 txt = txt + “ Alt”
 #*** Copy final text to label ***
 lab1[‘text’] = txt

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create label ***
lab1 = ttk.Label(root, text=”Waiting...”)
lab1.pack()

#*** Have window react to mouse movement ***
root.bind(‘<Motion>’, display_states)

#*** Wait for events ***
root.mainloop()

Activity 4.30
Widgets can be dragged to any position within the window.
They can even overlap each other.

Activity 4.31
Modified code for DraggingWidgets.py:

#*** Dragging Widgets ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def move_object(e):
 “””Reposition dragged widget
 “””

152 Hands On Python 3: Events and Event Handlers

 e.widget.place(x = e.x_root-root.winfo_x()-8,
 y = e.y_root-root.winfo_y()-30)

def lift_widget(e):
 “““ Lift widget to top level
 “““
 e.widget.lift()

def lower_widget(e):
 “““Lower widget to bottom level
 “““
 e.widget.lower()

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create 6 buttons with bindings to ***
#*** mouse drag and centre and right buttons ***
for c in range(6):
 lab = ttk.Button(root, text = str(c),width = 10)
 lab.place(x = 0, y = 0)
 lab.bind(‘<B1-Motion>’, move_object)
 lab.bind(‘<Button-3>’, lift_widget)
 lab.bind(‘<Button-2>’, lower_widget)

#*** Wait for events ***
root.mainloop()

Activity 4.32
Modified code for DraggingWidgets.py:

#*** Dragging Widgets ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def move_object(e):
 “””Reposition dragged widget
 “””
 e.widget.place(x = e.x_root-root.winfo_x()-8,
 y = e.y_root-root.winfo_y()-30)

def lift_widget(e):
 “”” Lift widget to top level
 “””
 e.widget.lift()

def lower_widget(e):
 “””Lowers widget to bottom level
 “””
 e.widget.lower()

def resize(e):
 “””Resizes width of widget
 “””
 if e.delta > 0:
 e.widget[‘width’] += 1
 else:
 e.widget[‘width’] -= 1

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create 6 buttons with bindings to ***
#*** mouse drag ***
for c in range(6):
 lab = ttk.Button(root, text = str(c),width = 10)
 lab.place(x = 0, y = 0)
 lab.bind(‘<B1-Motion>’, move_object)
 lab.bind(‘<3>’, lift_widget)
 lab.bind(‘<2>’, lower_widget)
 lab.bind(‘<MouseWheel>’, resize)

#*** Wait for events ***
root.mainloop()

Activity 4.33
Modified code for DraggingWidgets.py:

#*** Dragging Widgets ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def move_object(e):
 “””Reposition dragged widget
 “””
 e.widget.place(x = e.x_root-root.winfo_x()-8,
 y = e.y_root-root.winfo_y()-30)

def lift_widget(e):
 “”” Lift widget to top level
 “””
 e.widget.lift()

def lower_widget(e):
 “””Lowers widget to bottom level
 “””
 e.widget.lower()

def resize(e):
 “””Resizes width of widget
 “””
 if e.delta > 0:
 e.widget[‘width’] += 1
 else:
 e.widget[‘width’] -= 1

def reconfig(e):
 “”” Changes label to show ‘Reconfigured’
 “””
 lab1[‘text’] = “Reconfigured “ + e.widget[‘text’]

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create label ***
lab1 = ttk.Label(root, text = “Waiting...”)
lab1.place(x = 120, y = 10)

#*** Create 6 buttons with bindings to ***
#*** mouse drag, mouse buttons, wheel and size/
position ***
for c in range(6):
 but = ttk.Button(root, text = str(c),width = 10)
 but.place(x = 0, y = 0)
 but.bind(‘<B1-Motion>’, move_object)
 but.bind(‘<3>’, lift_widget)
 but.bind(‘<2>’, lower_widget)
 but.bind(‘<MouseWheel>’, resize)
 but.bind(‘<Configure>’, reconfig)

#*** Wait for events ***
root.mainloop()

The label should change when a widget is moved or resized.

Activity 4.34
The modifications require a new handler:

def exposed(e):
 “”” Changes label to show ‘Exposed’
 “””
 lab1[‘text’] = “Exposed “ + e.widget[‘text’]

and the following line added within the for loop structure:
but.bind(‘<Expose>’, exposed)

The label should show this option only when the widget
needs to be redrawn.

Hands On Python 3: Events and Event Handlers 153

Activity 4.35
The modifications require a new handler:

def focus(e):
 “”” Changes label to show ‘FocusIn’
 “””
 lab1[‘text’] = “FocusIn “ + e.widget[‘text’]]

and the following line added within the for loop structure:
but.bind(‘<FocusIn>’, focus)

The label should show this option only when the widget gains
focus.

Activity 4.36
The modifications require a new handler:

def defocus(e):
 “”” Changes label to show ‘FocusOut’
 “””
 lab1[‘text’] = “FocusOut “ + e.widget[‘text’]

and the following line added within the for loop structure:
but.bind(‘<FocusOut>’, defocus)

To have the label show this option, you need to comment out
the but.bind(‘<FocusIn>’ focus) statement.

Activity 4.37
No solution required.

Activity 4.38
Modified code for DraggingWidgets.py:

#*** Dragging Widgets ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def move_object(e):
 “””Reposition dragged widget
 “””
 e.widget.place(x = e.x_root-root.winfo_x()-8,
 y = e.y_root-root.winfo_y()-30)

def lift_widget(e):
 “”” Lift widget to top level
 “””
 e.widget.lift()

def lower_widget(e):
 “””Lowers widget to bottom level
 “””
 e.widget.lower()

def resize(e):
 “””Resizes width of widget
 “””
 if e.delta > 0:
 e.widget[‘width’] += 1
 else:
 e.widget[‘width’] -= 1

def reconfig(e):
 “”” Changes label to show as appropriate
 “””
 if e.type == ‘22’:
 lab1[‘text’] = “Reconfigured “ +
 e.widget[‘text’]
 elif e.type == ‘12’:
 lab1[‘text’] = “Exposed “ + e.widget[‘text’]
 elif e.type == ‘9’:
 lab1[‘text’] = “FocusIn “ + e.widget[‘text’]
 else:
 lab1[‘text’] = e.type

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Create label ***
lab1 = ttk.Label(root, text = “Waiting...”)
lab1.place(x = 120, y = 10)

#*** Create 6 buttons with bindings to ***
#*** mouse drag, mouse buttons, wheel and size/
position ***
for c in range(6):
 but = ttk.Button(root, text = str(c), width =
10)
 but.place(x = 0, y = 0)
 but.bind(‘<B1-Motion>’, move_object)
 but.bind(‘<3>’, lift_widget)
 but.bind(‘<2>’, lower_widget)
 but.bind(‘<MouseWheel>’, resize)
 but.bind(‘<Configure>’, reconfig)
 but.bind(‘<Expose>’, reconfig)
 but.bind(‘<FocusIn>’, reconfig)

#*** Wait for events ***
root.mainloop()

Activity 4.39
No solution required.

Activity 4.40
No solution required.

Activity 4.41
Modified code for Timing.py:

#*** A Timed Event ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_label():
 “””Adds + symbol to label’s string every 2 secs
 “””
 lab1[‘text’] += “+”
 #*** Reschedule event ***
 root.after(2000, change_label)

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘300x180+500+500’)

#*** Add a label ***
lab1 = ttk.Label(root, text = “”)
lab1.pack()

#*** After 2 seconds, change label’s text ***
root.after(2000, change_label)

#*** Wait for events ***
root.mainloop()

A + character is added to the string every two seconds.

The string continues to grow indefinitely.

Activity 4.42
The code for the event handler should now be:

def change_label():
 “””Adds + symbol to label’s string every 2 secs
 “””

154 Hands On Python 3: Events and Event Handlers

 lab1[‘text’] += “+”
 #*** Reschedule event ***
 root.after(2000, change_label)
 print(root.after(2000, change_label))

The values displayed in the console window will be

after#2
after#4
after#6
etc.

Activity 4.43
No solution required.

Activity 4.44
No solution required.

Activity 4.45
Modified code for VirtualEvent.py:

#*** Using a Virtual Event ***

#*** Import modules ***
from tkinter import *
from tkinter import ttk

#***************************************
*** Event Handlers ***

def change_colour(e):
 “””Changes the text colour of lab1 to that
 given as text on button, e
 “””
 lab1[‘foreground’] = e.widget.cget(‘text’)

def remove_return():
 “””Removes the native Return key press from
 the BPress virtual event
 “””
 root.event_delete(‘<<BPress>>’,
 ’<KeyPress Return>’)

#***************************************
*** GUI Layout ***

#*** Create window ***
root = Tk()
root.geometry(‘320x180+500+500’)

#*** Create a Virtual event *** for mouse button 1
or return key ***
root.event_add(‘<<BPress>>’, ‘<Button-1>’,
‘<KeyPress Return>’)

#*** Create label ***
lab1 = ttk.Label(root, text = ‘Changes colour’)
lab1.pack(side = ‘top’)

Create three buttons all linked to the virtual
event ***
but1 = ttk.Button(root, text = ‘red’)
but1.pack(side = ‘left’)
but1.bind(‘<<BPress>>’, change_colour)

but2 = ttk.Button(root, text = ‘green’)
but2.pack(side = ‘left’)
but2.bind(‘<<BPress>>’, change_colour)

but3 = ttk.Button(root, text = ‘blue’)
but3.pack(side = ‘left’)
but3.bind(‘<<BPress>>’, change_colour)

but4 = ttk.Button(root, text = ‘Remove Return’,
command = remove_return)
but4.pack(side = ‘left’)

#*** Wait for events ***
root.mainloop()

Activity 4.46
In VirtualEvent.py, the handler remove_return() is now coded
as:

def remove_return():
 “””Removes the native Return key press from
 the BPress virtual event
 “””
 print(root.event_info(‘<<BPress>>’))
 root.event_delete(‘<<BPress>>’,
 ’<KeyPress Return>’)
 print(root.event_info(‘<<BPress>>’))

Activity 4.47
In VirtualEvent.py, the handler remove_return() is now coded
as:

def remove_return():
 “””Removes the native Return key press from
 the BPress virtual event and turns text blue
 “””
 root.event_delete(‘<<BPress>>’,
 ’<KeyPress Return>’)
 #*** Create blue text ***
 but3.event_generate(‘<<BPress>>’)

Activity 4.48
When the fourth button is pressed, it forces a call to change_
colour(). But because this is a generated ‘<<BPress>>’ event
rather than a true one, the Event object does not have its usual
values and hence the time attribute has a zero value which is
then copied to the label.

Activity 4.49
Updated code for remove_return():

def remove_return():
 “””Removes the native Return key press from
 the BPress virtual event and turns text blue
 “””
 root.event_delete(‘<<BPress>>’,’<KeyPress
 Return>’)
 #*** Create blue text ***
 but3.event_generate(‘<<BPress>>’, time = 140000)

When the fourth button is pressed, the label displays the
value 14000.

